config_parser.py 158.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

Z
zhangjinchao01 已提交
344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
Z
zhangjinchao01 已提交
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
391
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
411

Z
zhangjinchao01 已提交
412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
418

Z
zhangjinchao01 已提交
419 420
@config_class
class Bias(Cfg):
X
xuwei06 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
437 438
        self.add_keys(locals())

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
447
            initializer=None,
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
461
            bilinear_interp=None,
Z
zhangjinchao01 已提交
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
X
xzl 已提交
469
            upsample=None,
Z
zhangjinchao01 已提交
470 471 472 473 474
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
475
            input_layer_argument=None,
D
dangqingqing 已提交
476 477 478 479 480
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
481
        self.add_keys(locals())
D
dangqingqing 已提交
482 483 484
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
485

Q
qijun 已提交
486

Z
zhangjinchao01 已提交
487 488 489
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
490 491
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
492 493 494
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
495
            size=0,  # projection output size
Z
zhangjinchao01 已提交
496 497 498 499 500 501 502 503 504
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
505
            initializer=None,
Z
zhangjinchao01 已提交
506 507 508 509 510 511 512 513 514 515
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
516
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
530

Z
zhangjinchao01 已提交
531 532
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
533

Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541 542 543
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
544

Z
zhangjinchao01 已提交
545 546
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
547

Z
zhangjinchao01 已提交
548 549 550
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
551

Z
zhangjinchao01 已提交
552 553 554 555 556 557
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
558 559 560
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
561 562
        self.proj_conf.offset = offset

563 564 565
    def calc_output_size(self, input_layer_config):
        return 0  # depends on the outside MixedLayer

Z
zhangjinchao01 已提交
566 567
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
568

Z
zhangjinchao01 已提交
569 570 571
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
602 603 604 605 606 607 608
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
609

Z
zhangjinchao01 已提交
610 611
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
612

Z
zhangjinchao01 已提交
613 614 615
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
616

X
xuwei06 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
631

Z
zhangjinchao01 已提交
632 633 634 635 636 637
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
638

Z
zhangjinchao01 已提交
639 640 641
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
642

Z
zhangjinchao01 已提交
643 644 645 646 647 648
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
649

Z
zhangjinchao01 已提交
650 651 652
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
653

Z
zhangjinchao01 已提交
654 655 656 657 658 659
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
660

Z
zhangjinchao01 已提交
661 662 663
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
664

Z
zhangjinchao01 已提交
665 666 667 668
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
669 670
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


694
@config_class
695
class ConvBaseProjection(Projection):
Q
qijun 已提交
696 697 698 699 700
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
701
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
702 703 704 705 706 707 708 709 710 711 712 713

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
714 715
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
716 717 718 719 720 721 722

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
723

724 725 726 727 728 729 730 731 732
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
733 734
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
735

736
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
752 753
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
754 755 756

        parse_conv(
            conv_conf,
757
            self.input_layer_name,
758 759 760 761 762 763 764 765
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
766 767 768
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
769 770
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
771 772
    def __init__(
            self,
Q
qijun 已提交
773
            input_layer_names, ):
Z
zhangjinchao01 已提交
774 775 776 777 778 779 780 781 782 783
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
784

Z
zhangjinchao01 已提交
785 786 787
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
788 789 790

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
809 810 811 812 813 814 815

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
816 817 818
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

819 820
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
821
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
822 823 824
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
825 826 827

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

828 829
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
830 831


832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
862 863 864
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
865 866 867 868 869 870 871 872 873 874 875 876
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
W
wanghaoshuang 已提交
877 878 879
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
Z
zhangjinchao01 已提交
880 881
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
882
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
883
        if padding_y is None:
Q
qijun 已提交
884
            self.padding_y = padding
885 886
        if dilation_y is None:
            self.dilation_y = dilation
Z
zhangjinchao01 已提交
887
        if stride_y is None:
Q
qijun 已提交
888
            self.stride_y = stride
Z
zhangjinchao01 已提交
889
        if output_x is not None:
Q
qijun 已提交
890 891
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
892

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
C
chengduoZH 已提交
913 914 915 916 917 918
        self.filter_size_y = filter_size_y if filter_size_y else filter_size
        self.filter_size_z = filter_size_z if filter_size_z else filter_size
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride
919 920 921 922
        if output_x is not None:
            config_assert(output_x <= 0)


L
liaogang 已提交
923 924
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
925
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
926 927
        self.add_keys(locals())

Q
qijun 已提交
928

Z
zhangjinchao01 已提交
929 930
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
931 932 933 934 935 936 937 938 939 940 941
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
942
        self.add_keys(locals())
Q
qijun 已提交
943 944


C
chengduoZH 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
970
@config_class
Q
qijun 已提交
971
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
972
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
973
        self.add_keys(locals())
Z
zhangjinchao01 已提交
974

Q
qijun 已提交
975

D
dangqingqing 已提交
976 977 978 979 980
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())

X
xzl 已提交
981

X
xzl 已提交
982 983 984 985 986
@config_class
class Upsample(Cfg):
    def __init__(self, scale, scale_y, pad_out_x, pad_out_y, upsample_size,
                 upsample_size_y):
        self.add_keys(locals())
D
dangqingqing 已提交
987

X
xzl 已提交
988

Z
zhangjinchao01 已提交
989 990
@config_class
class Norm(Cfg):
Q
qijun 已提交
991 992 993 994 995 996 997 998 999
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
1000 1001
        self.add_keys(locals())

Q
qijun 已提交
1002

Z
zhangjinchao01 已提交
1003 1004
@config_class
class Image(Cfg):
Q
qijun 已提交
1005
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
1006 1007
        self.add_keys(locals())

Q
qijun 已提交
1008

Z
zhangjinchao01 已提交
1009 1010
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
1023 1024
        self.add_keys(locals())

Q
qijun 已提交
1025

1026 1027
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
1028
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
1029 1030
        self.add_keys(locals())

Q
qijun 已提交
1031

1032
def create_data_config_proto(async_load_data=False,
1033
                             constant_slots=None,
王益 已提交
1034 1035 1036
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
1037 1038 1039 1040 1041 1042 1043 1044
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
1045 1046
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
1047

Q
qijun 已提交
1048
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
1049 1050 1051 1052 1053 1054
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
1055

Z
zhangjinchao01 已提交
1056
@config_func
Q
qijun 已提交
1057 1058 1059 1060 1061
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1062
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1072

Z
zhangjinchao01 已提交
1073
@config_func
Q
qijun 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1084
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1085 1086
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1087

Z
zhangjinchao01 已提交
1088 1089 1090
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1091

Z
zhangjinchao01 已提交
1092 1093 1094
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1095 1096
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1097
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1098 1099 1100 1101
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1126

Z
zhangjinchao01 已提交
1127
@config_func
Q
qijun 已提交
1128 1129 1130 1131 1132 1133 1134
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1135
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1155

Z
zhangjinchao01 已提交
1156 1157
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1158
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1159 1160 1161 1162 1163
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1164

Z
zhangjinchao01 已提交
1165
@config_func
Q
qijun 已提交
1166 1167 1168 1169 1170 1171 1172
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1173

1174
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1208

L
Luo Tao 已提交
1209 1210
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
X
xzl 已提交
1211 1212 1213 1214 1215 1216 1217 1218
def cnn_output_size(img_size,
                    filter_size,
                    padding,
                    stride,
                    caffe_mode,
                    dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    output = (2 * padding + img_size - filter_s) / float(stride)
1219 1220 1221 1222 1223
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1224

1225
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1226
#It is the reverse function of cnn_output_size
X
xzl 已提交
1227 1228 1229 1230 1231 1232 1233 1234
def cnn_image_size(output_size,
                   filter_size,
                   padding,
                   stride,
                   caffe_mode,
                   dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    img_size = (output_size - 1) * stride + filter_s - 2 * padding
L
Luo Tao 已提交
1235 1236
    if not caffe_mode:
        img_size = img_size + 1
1237 1238
    return img_size

Q
qijun 已提交
1239

L
Luo Tao 已提交
1240
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


C
chengduoZH 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


L
Luo Tao 已提交
1267 1268 1269 1270 1271 1272
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1273
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1274
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1275
    config_assert(pool.pool_type in [
X
xzl 已提交
1276 1277 1278
        'max-projection', 'avg-projection', 'max-pool-with-mask', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in " \
              "['max-projection', 'avg-projection', 'max-pool-with-mask'," \
Q
qijun 已提交
1279
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1280 1281 1282 1283 1284 1285

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1286
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1287

L
Luo Tao 已提交
1288
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1289
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1290

1291
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1292

1293
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1294
        pool_conf.padding = pool.padding
1295
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1296 1297
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1298
                                         not ceil_mode)
D
dangqingqing 已提交
1299 1300
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1301
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1302

Z
zhangjinchao01 已提交
1303

C
chengduoZH 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1343
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1344
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1345 1346
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1347 1348
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1349
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1350

Q
qijun 已提交
1351

Z
zhangjinchao01 已提交
1352 1353
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1354
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1355
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1356

Z
zhangjinchao01 已提交
1357

C
chengduoZH 已提交
1358 1359 1360 1361 1362 1363
def parse_image3d(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
        get_img3d_size(input_layer_name, image_conf.channels)


Z
zhangjinchao01 已提交
1364 1365
def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1366 1367 1368 1369 1370
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1371 1372 1373 1374 1375 1376
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1377
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1378
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1379
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1380
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1381 1382 1383
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1384 1385
        norm_conf.scale /= norm.size**2

1386

L
Luo Tao 已提交
1387 1388
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1389
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
X
xzl 已提交
1399 1400 1401 1402 1403 1404
    if not conv.dilation:
        conv.dilation = 1
        conv.dilation_y = 1
    else:
        conv_conf.dilation = conv.dilation
        conv_conf.dilation_y = conv.dilation_y
Q
qijun 已提交
1405

1406
    if not trans:
1407
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1408
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1409
            get_img_size(input_layer_name, conv.channels)
1410
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1411
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1412
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1413 1414
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1415
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
1416
    else:
1417
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1418
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1419
            get_img_size(input_layer_name, conv.channels)
1420
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1421
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1422
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1423
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1424
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1425
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
Q
qijun 已提交
1426

1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


Z
zhangjinchao01 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1485
        block_expand_conf.output_x = cnn_output_size(
1486
            block_expand.img_size_x, block_expand.block_x,
1487
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1488 1489

    if block_expand_conf.img_size_y == 0:
1490
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1491
    else:
1492
        block_expand_conf.output_y = cnn_output_size(
1493
            block_expand.img_size_y, block_expand.block_y,
1494
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1495

Q
qijun 已提交
1496

1497
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1498
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1499
    maxout_conf.groups = maxout.groups
1500

Q
qijun 已提交
1501

Z
zhangjinchao01 已提交
1502 1503
# Define an evaluator
@config_func
Y
yangyaming 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1546 1547
    if top_k is not None:
        evaluator.top_k = top_k
1548 1549
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1550

1551 1552 1553
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1566

Z
zhangjinchao01 已提交
1567 1568 1569 1570 1571
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1572
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1573 1574 1575 1576
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1577 1578
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1579
        config_assert('@' not in name,
Q
qijun 已提交
1580
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1596
        assert isinstance(self.config, LayerConfig)
1597
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
T
tensor-tang 已提交
1598
        mkldnn_acts = ['relu', 'tanh', 'softmax']
1599 1600
        if use_mkldnn and active_type in mkldnn_acts:
            active_type = "mkldnn_" + active_type
Z
zhangjinchao01 已提交
1601 1602 1603
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1604 1605
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1606 1607 1608 1609 1610 1611 1612
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1613
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1614 1615
            self.config.device = g_default_device

C
caoying03 已提交
1616 1617 1618
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1619 1620 1621 1622 1623 1624 1625
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1626 1627
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1628 1629 1630 1631 1632 1633 1634 1635
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1636
                self.operators.append(input)
Z
zhangjinchao01 已提交
1637 1638 1639 1640
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1641
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1642
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1643 1644
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1662
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1663
            size,
Q
qijun 已提交
1664 1665 1666
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1667 1668 1669 1670 1671 1672

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1673 1674 1675
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1685 1686
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1687 1688 1689
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1690 1691
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1703 1704
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1705
                    is_static=bias.is_static,
X
xuwei06 已提交
1706 1707
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1708 1709 1710 1711 1712
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1713 1714 1715 1716 1717 1718
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1733 1734
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1735 1736
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1737 1738
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1739 1740 1741 1742 1743 1744
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1745
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1758 1759
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1760 1761 1762 1763
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1764 1765
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1775 1776 1777 1778
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

C
chengduoZH 已提交
1779 1780 1781
    def set_layer_depth(self, depth):
        self.config.depth = depth

L
Luo Tao 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1795

Z
zhangjinchao01 已提交
1796 1797
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1798 1799 1800
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1801 1802
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1803

C
caoying03 已提交
1804 1805 1806
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1807
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1808 1809 1810 1811
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1812 1813 1814 1815 1816
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1817 1818


Z
zhangjinchao01 已提交
1819 1820
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1821 1822
    layer_type = 'fc'

L
lianxiaochen 已提交
1823 1824 1825 1826 1827 1828 1829
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1830
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1831 1832
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1833 1834 1835 1836 1837 1838 1839
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1840 1841 1842 1843 1844 1845
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1846 1847 1848
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1849 1850
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1851 1852
            if sparse:
                psize = self.inputs[input_index].nnz
1853 1854
            else:
                sparse = None
Z
zhangjinchao01 已提交
1855

Q
qijun 已提交
1856 1857
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1858
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1859 1860
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1861

Q
qijun 已提交
1862

T
tensor-tang 已提交
1863 1864 1865 1866 1867
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1868 1869
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1900 1901
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1914 1915
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1916 1917
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1918

1919 1920
@config_layer('print')
class PrintLayer(LayerBase):
1921
    def __init__(self, name, inputs, format=None):
1922
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1923 1924 1925 1926 1927 1928
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1929

Q
qijun 已提交
1930

Y
yuan 已提交
1931 1932
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1933 1934
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1935
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1936
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1937 1938 1939 1940 1941 1942 1943
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1944
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1945 1946 1947 1948 1949 1950
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1951

1952 1953 1954
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1955
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1977
                 background_id, **xargs):
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


G
guosheng 已提交
1998 1999
@config_layer('roi_pool')
class ROIPoolLayer(LayerBase):
2000 2001
    def __init__(self, name, inputs, pooled_width, pooled_height, spatial_scale,
                 num_channels, **xargs):
G
guosheng 已提交
2002 2003 2004 2005 2006
        super(ROIPoolLayer, self).__init__(name, 'roi_pool', 0, inputs)
        config_assert(len(inputs) == 2, 'ROIPoolLayer must have 2 inputs')
        self.config.inputs[0].roi_pool_conf.pooled_width = pooled_width
        self.config.inputs[0].roi_pool_conf.pooled_height = pooled_height
        self.config.inputs[0].roi_pool_conf.spatial_scale = spatial_scale
2007
        self.set_cnn_layer(name, pooled_height, pooled_width, num_channels)
G
guosheng 已提交
2008 2009


Z
zhangjinchao01 已提交
2010 2011
@config_layer('data')
class DataLayer(LayerBase):
C
chengduoZH 已提交
2012 2013 2014 2015 2016 2017 2018
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
Q
qijun 已提交
2019 2020
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
2021 2022
        if height and width:
            self.set_layer_height_width(height, width)
C
chengduoZH 已提交
2023 2024
        if depth:
            self.set_layer_depth(depth)
Q
qijun 已提交
2025

Z
zhangjinchao01 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
2053 2054


Z
zhangjinchao01 已提交
2055 2056
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
2057
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
2069

Z
zhangjinchao01 已提交
2070 2071 2072
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
2073 2074

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
2075 2076 2077
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
2078 2079 2080
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
Z
zhangjinchao01 已提交
2081
        self.set_layer_size(input_layer.size)
C
caoying03 已提交
2082
        self.config.partial_sum = partial_sum
Z
zhangjinchao01 已提交
2083 2084
        self.create_input_parameter(0, input_layer.size / partial_sum)

Q
qijun 已提交
2085

Z
zhangjinchao01 已提交
2086 2087 2088
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
2089 2090 2091 2092 2093 2094 2095 2096

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
2097 2098 2099 2100 2101 2102
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

2103
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
Z
zhangjinchao01 已提交
2104 2105 2106
        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2107 2108
        # Automatically select cudnn_type for GPU, exconv for CPU
        # and mkldnn_conv for MKLDNN
Z
zhangjinchao01 已提交
2109
        # if set type=conv, but still reserve the way user specify
2110
        # exconv, mkldnn_conv or cudnn_conv manually.
Z
zhangjinchao01 已提交
2111 2112 2113
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

2114 2115 2116
        if self.layer_type == "mkldnn_conv":
            config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")

Z
zhangjinchao01 已提交
2117
        if (use_gpu == 1 and self.layer_type != "exconv" and
2118
                self.layer_type != "mkldnn_conv" and
Q
qijun 已提交
2119
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
2120 2121
            self.layer_type = "cudnn_conv"
        else:
2122
            self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
Z
zhangjinchao01 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
2132 2133
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
2134 2135
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
2136 2137
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
2138 2139 2140 2141 2142 2143 2144 2145

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
2146
               * (conv_conf.filter_size * conv_conf.filter_size_y)
Z
zhangjinchao01 已提交
2147

Q
qijun 已提交
2148

Z
zhangjinchao01 已提交
2149 2150 2151 2152
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
2153

2154 2155 2156 2157 2158
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'mkldnn_conv'


Z
zhangjinchao01 已提交
2159 2160 2161 2162
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2163 2164 2165 2166

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
2167 2168 2169 2170 2171 2172 2173 2174

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2175
        super(ConvTransLayerBase, self).__init__(
2176 2177 2178 2179 2180 2181 2182 2183
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2195 2196 2197 2198 2199 2200 2201 2202
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2203
            parse_conv(
2204 2205
                self.inputs[input_index].conv,
                input_layer.name,
2206
                self.config.inputs[input_index].conv_conf,
2207
                num_filters,
2208
                trans=True)
2209 2210 2211
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2212 2213
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2214 2215 2216 2217 2218 2219 2220

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2221
        return conv_conf.channels * conv_conf.filter_channels \
2222 2223
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2224

2225 2226 2227 2228
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
2229

2230 2231 2232 2233 2234
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


C
chengduoZH 已提交
2235 2236
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
2237 2238 2239 2240 2241
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
C
chengduoZH 已提交
2242
                 shared_biases=True,
2243
                 **xargs):
C
chengduoZH 已提交
2244
        super(Conv3DLayerBase, self).__init__(
2245 2246 2247 2248 2249 2250 2251 2252
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        # need to specify layer in config
        self.config.type = self.layer_type

C
chengduoZH 已提交
2253 2254 2255 2256
        trans = False
        if self.config.type == "deconv3d":
            trans = True

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
C
chengduoZH 已提交
2268
                trans=trans
2269 2270 2271
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
C
chengduoZH 已提交
2272 2273 2274 2275 2276 2277 2278
            if trans:
                self.set_cnn_layer(name, conv_conf.img_size_z,
                                   conv_conf.img_size_y, conv_conf.img_size,
                                   self.config.num_filters)
            else:
                self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                                   conv_conf.output_x, self.config.num_filters)
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
C
chengduoZH 已提交
2299 2300
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
2301 2302 2303 2304 2305
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


C
chengduoZH 已提交
2306 2307 2308
@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'
2309

Q
qijun 已提交
2310

C
chengduoZH 已提交
2311 2312 2313
@config_layer('deconv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'deconv3d'
2314 2315


Z
zhangjinchao01 已提交
2316 2317
@config_layer('norm')
class NormLayer(LayerBase):
2318 2319
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2320 2321 2322
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2323 2324 2325 2326
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2327 2328 2329
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2330

Z
zhangjinchao01 已提交
2331 2332 2333

@config_layer('pool')
class PoolLayer(LayerBase):
2334 2335
    layer_type = 'pool'

2336
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
2337 2338 2339 2340 2341 2342
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
        if self.layer_type == "mkldnn_pool":
            config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN")
        self.layer_type = 'mkldnn_pool' if use_mkldnn else 'pool'
        super(PoolLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2343 2344 2345
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2346
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2347
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2348 2349
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2350

Z
zhangjinchao01 已提交
2351

2352 2353 2354 2355 2356
@config_layer('mkldnn_pool')
class MKLDNNPoolLayer(PoolLayer):
    layer_type = 'mkldnn_pool'


C
chengduoZH 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2386 2387
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2388
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2389
        super(SpatialPyramidPoolLayer, self).__init__(
2390
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2391 2392 2393
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2394 2395 2396
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2397

X
xzl 已提交
2398

X
xzl 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
@config_layer('upsample')
class UpsampleLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(UpsampleLayer, self).__init__(
            name, 'upsample', 0, inputs=inputs, **xargs)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].upsample_conf.image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)

        upsample = self.inputs[0].upsample
X
xzl 已提交
2413
        output_x = 0
X
xzl 已提交
2414 2415
        output_y = 0
        output_size = 0
X
xzl 已提交
2416

X
xzl 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        if upsample.scale:
            self.config.inputs[0].upsample_conf.scale = upsample.scale
            self.config.inputs[0].upsample_conf.scale_y = upsample.scale_y
            output_x = input_layer.width * upsample.scale
            output_y = input_layer.height * upsample.scale_y
        self.config.inputs[0].upsample_conf.pad_out_x = upsample.pad_out_x
        self.config.inputs[0].upsample_conf.pad_out_y = upsample.pad_out_y
        if upsample.upsample_size:
            self.config.inputs[
                0].upsample_conf.upsample_size = upsample.upsample_size
            self.config.inputs[
                0].upsample_conf.upsample_size_y = upsample.upsample_size_y
            output_x = upsample.upsample_size
            output_y = upsample.upsample_size_y

        output_size = image_conf.channels * output_x * output_y

        self.set_layer_height_width(output_y, output_x)
        self.set_layer_depth(input_layer.depth)
        self.set_layer_size(output_size)
Q
qijun 已提交
2437

X
xzl 已提交
2438

D
dangqingqing 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2458 2459
@config_layer('crop')
class CropLayer(LayerBase):
2460
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2461
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2462 2463 2464
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2475 2476 2477
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2478 2479 2480 2481 2482

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
C
chengduoZH 已提交
2483
                 img3D=False,
Q
qijun 已提交
2484 2485 2486
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
C
chengduoZH 已提交
2487
                 mean_var_names=None,
Q
qijun 已提交
2488
                 **xargs):
Z
zhangjinchao01 已提交
2489 2490 2491 2492
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2493 2494
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2495 2496 2497 2498 2499 2500
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
2501
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
Z
zhangjinchao01 已提交
2502 2503
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2504 2505 2506 2507 2508 2509
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2510
                    is_shared=is_shared,
D
dangqingqing 已提交
2511
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2512 2513 2514

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
2515 2516 2517 2518
        # Automatically select cudnn_batch_norm for GPU, batch_norm for CPU
        # and mkldnn_batch_norm for MKLDNN. Also based on cudnn version.
        if batch_norm_type == "mkldnn_batch_norm":
            config_assert(use_mkldnn, "mkldnn_batch_norm only support MKLDNN")
Z
zhangjinchao01 已提交
2519
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2520
                not use_mkldnn and batch_norm_type != "mkldnn_batch_norm" and \
2521
                ((not parallel_nn) or self.config.device > -1)
2522 2523 2524 2525
        if use_cudnn:
            self.layer_type = "cudnn_batch_norm"
        else:
            self.layer_type = "mkldnn_batch_norm" if use_mkldnn else "batch_norm"
Q
qijun 已提交
2526
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2527
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2528 2529 2530 2531 2532 2533

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

Q
qijun 已提交
2534
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2535
        image_conf = self.config.inputs[0].image_conf
C
chengduoZH 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
        if img3D:
            parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    depth=image_conf.img_size_z,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
2550
        else:
C
chengduoZH 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
            parse_image(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2563 2564 2565

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
C
chengduoZH 已提交
2566 2567 2568 2569
        if mean_var_names is not None:
            assert len(mean_var_names) == 2
            self.inputs[1].parameter_name = mean_var_names[0]
            self.inputs[2].parameter_name = mean_var_names[1]
C
chengduoZH 已提交
2570

Z
zhangjinchao01 已提交
2571 2572 2573 2574 2575 2576
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

C
chengduoZH 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
    def set_cnn_layer(self,
                      input_layer_name,
                      depth=None,
                      height=None,
                      width=None,
                      channels=None,
                      is_print=True):
        depthIsNone = False
        if depth is None:
            depth = 1
            depthIsNone = True
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print and depthIsNone:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))
        elif is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))

Z
zhangjinchao01 已提交
2599 2600 2601
    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2602

Z
zhangjinchao01 已提交
2603 2604
@config_layer('trans')
class TransLayer(LayerBase):
2605
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2606
        super(TransLayer, self).__init__(
2607
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2608 2609 2610
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2611 2612
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2613

Z
zhangjinchao01 已提交
2614 2615
@config_layer('resize')
class ResizeLayer(LayerBase):
2616
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2617
        super(ResizeLayer, self).__init__(
2618
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2619 2620 2621 2622
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2623

2624 2625
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2626
    def __init__(self, name, inputs, height, width, device=None):
2627 2628 2629 2630 2631
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2632
        self.set_layer_height_width(height, width)
2633 2634 2635
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2636 2637
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2638
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2639
        super(BlockExpandLayer, self).__init__(
2640
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2641 2642
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2643 2644
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2645
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2646 2647 2648 2649 2650 2651
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2652

2653 2654
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2655 2656 2657
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2658 2659
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2660
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2661
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2662 2663
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2664

2665

D
dangqingqing 已提交
2666 2667 2668 2669
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2670
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2671 2672
        config_assert(
            len(self.inputs) == 1,
2673
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2683 2684
@config_layer('clip')
class ClipLayer(LayerBase):
2685 2686
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2687 2688
        config_assert(
            len(self.inputs) == 1,
2689 2690
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2691 2692
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2693 2694
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2695 2696


G
guosheng 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2711 2712 2713 2714
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2715

Z
zhangjinchao01 已提交
2716 2717 2718
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2719 2720
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2721

Q
qijun 已提交
2722
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2723 2724 2725
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2726

Z
zhangjinchao01 已提交
2727
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2728
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
Z
zhangjinchao01 已提交
2729 2730 2731 2732 2733 2734
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2735
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2736
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2737
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2738

Q
qijun 已提交
2739

Z
zhangjinchao01 已提交
2740 2741
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2742
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2743 2744
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2745 2746 2747
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2748 2749 2750 2751 2752 2753 2754 2755
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2756

Z
zhangjinchao01 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2781 2782


Z
zhangjinchao01 已提交
2783 2784
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2785
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2786 2787
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2788
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2789 2790
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2791 2792 2793
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2794 2795
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2796

L
Luo Tao 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


Z
zhangjinchao01 已提交
2808 2809
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2810 2811 2812 2813 2814 2815 2816 2817
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2818
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2819 2820
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2821 2822
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2823 2824 2825 2826
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2827
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2828 2829 2830
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2831 2832 2833 2834 2835

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2836
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2837 2838 2839 2840
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2841 2842
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
T
tensor-tang 已提交
2856 2857
    layer_type = 'addto'

Q
qijun 已提交
2858
    def __init__(self, name, inputs, bias=True, **xargs):
T
tensor-tang 已提交
2859 2860 2861 2862
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        if self.layer_type == "mkldnn_addto":
            config_assert(use_mkldnn, "mkldnn_addto only support MKLDNN")
        self.layer_type = 'mkldnn_addto' if use_mkldnn else 'addto'
Z
zhangjinchao01 已提交
2863
        super(AddToLayer, self).__init__(
T
tensor-tang 已提交
2864
            name, self.layer_type, 0, inputs=inputs, **xargs)
Q
qijun 已提交
2865
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2866 2867

        if len(self.inputs) > 1:
2868 2869 2870 2871 2872 2873 2874
            for input_index in xrange(len(self.inputs)):
                assert self.get_input_layer(0).height == self.get_input_layer(
                    input_index).height
                assert self.get_input_layer(0).width == self.get_input_layer(
                    input_index).width
                assert self.get_input_layer(0).depth == self.get_input_layer(
                    input_index).depth
2875 2876 2877 2878 2879

        self.set_layer_size(self.get_input_layer(0).size)
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                        self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
2880 2881
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2882

T
tensor-tang 已提交
2883 2884 2885 2886 2887
@config_layer('mkldnn_addto')
class MKLDNNAddtoLayer(AddToLayer):
    layer_type = 'mkldnn_addto'


Z
zhangjinchao01 已提交
2888 2889
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2890 2891 2892 2893
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2894 2895 2896

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2897
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2898 2899 2900
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2901

Z
zhangjinchao01 已提交
2902 2903
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2904
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2905 2906
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2907 2908
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2909

Q
qijun 已提交
2910

Z
zhangjinchao01 已提交
2911 2912
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2913 2914 2915 2916 2917
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2918
        for i in range(1, len(inputs)):
Q
qijun 已提交
2919 2920 2921 2922 2923
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2924 2925

@config_func
2926 2927 2928 2929
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2930 2931 2932 2933
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2934

Z
zhangjinchao01 已提交
2935 2936
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2937 2938 2939 2940
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2964
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2965
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2966
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2967
    memory = g_current_submodel.memories.add()
2968 2969
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2970
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2971
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2972
                   boot_with_const_id is not None))
Q
qijun 已提交
2973 2974 2975 2976
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2977 2978 2979
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2980 2981
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2982 2983 2984
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2985
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2986 2987 2988 2989 2990
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
3014 3015 3016 3017
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
3027

Z
zhangjinchao01 已提交
3028 3029
@config_layer('expand')
class ExpandLayer(LayerBase):
3030
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
3031
        super(ExpandLayer, self).__init__(
3032
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3033 3034 3035 3036 3037 3038 3039 3040
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
3041 3042 3043

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
3044 3045 3046 3047 3048
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
3049 3050
                 bias=False,
                 **xargs):
Q
qijun 已提交
3051
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
3052
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3053 3054 3055
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
3056
            self.config.num_filters = num_filters
Q
qijun 已提交
3057
        else:
Z
zhangjinchao01 已提交
3058
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
3059 3060
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
3061
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
3062 3063 3064 3065


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
3066 3067 3068 3069 3070
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3071
                 output_max_index=None,
3072
                 stride=-1,
3073
                 **xargs):
3074
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3075
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
3076 3077
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3078
        self.config.trans_type = trans_type
3079
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3080 3081 3082 3083
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
3084 3085
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
3086 3087 3088 3089


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
3090
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
3108
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
3109 3110 3111
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
3112
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
3113 3114
        self.config.eos_id = eos_id

Q
qijun 已提交
3115

Z
zhangjinchao01 已提交
3116 3117
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
3118 3119 3120 3121
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
3122
                 bias=False,
3123
                 stride=-1,
3124
                 **xargs):
Q
qijun 已提交
3125
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
3126
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3127 3128
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
3129
        if trans_type == 'seq':
L
Luo Tao 已提交
3130
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3131
        self.config.trans_type = trans_type
3132 3133
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
3134 3135
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3136

Z
zhangjinchao01 已提交
3137 3138
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
3139 3140 3141 3142 3143
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3144
                 stride=-1,
3145
                 **xargs):
Q
qijun 已提交
3146
        super(SequenceFirstInstanceLayer, self).__init__(
3147 3148 3149 3150 3151 3152
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
3153 3154
        self.config.select_first = True

Q
qijun 已提交
3155

Z
zhangjinchao01 已提交
3156 3157
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
3158
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3159
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
3160
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3161 3162
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
3163 3164 3165 3166 3167
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3168

Z
zhangjinchao01 已提交
3169 3170
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
3171
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
3172
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
3173
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
3174 3175
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3176 3177 3178
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3179

Z
zhangjinchao01 已提交
3180 3181
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
3182
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3183
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
3184
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3185 3186 3187 3188 3189 3190
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
3232
            self.config.select_first = (starts is not None)
3233 3234


C
caoying03 已提交
3235 3236
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
3249
        super(SubNestedSequenceLayer, self).__init__(
3250 3251 3252 3253 3254
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
3255 3256 3257 3258 3259
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


Z
zhangjinchao01 已提交
3260 3261
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
3262 3263 3264
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3265 3266 3267 3268 3269
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
3270

Z
zhangjinchao01 已提交
3271 3272
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
3273 3274 3275
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3276 3277 3278 3279
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3280 3281 3282
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
3283 3284 3285

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
3286 3287 3288
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3289 3290 3291 3292 3293 3294
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3295

Z
zhangjinchao01 已提交
3296 3297
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
3298 3299 3300
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3301 3302 3303 3304
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3305 3306 3307
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
3308 3309 3310

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
3311 3312 3313
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3314 3315 3316 3317
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3318

Z
zhangjinchao01 已提交
3319 3320
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
3321
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3322
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
3323 3324 3325
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3326 3327 3328
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
3329 3330
        self.set_layer_size(size)

Q
qijun 已提交
3331

Z
zhangjinchao01 已提交
3332 3333
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
3334
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3335 3336
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
3337 3338
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
3339 3340 3341 3342 3343 3344 3345 3346
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
3347

L
liaogang 已提交
3348 3349
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
3350
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
3351
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3352
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
3353
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
3354 3355 3356 3357
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
3358

L
liaogang 已提交
3359

Z
zhangjinchao01 已提交
3360 3361
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
3362
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3363
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
3364 3365 3366
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
3367 3368 3369
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3370

G
guosheng 已提交
3371 3372
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3373
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3374
        super(RowL2NormLayer, self).__init__(
3375
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3376
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3377 3378
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3379 3380


Z
zhangjinchao01 已提交
3381 3382
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
3383
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
3384
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
3385
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3386
        self.config.cos_scale = cos_scale
Q
qijun 已提交
3387 3388
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
3389 3390 3391
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
Z
zhangjinchao01 已提交
3392

Q
qijun 已提交
3393

Z
zhangjinchao01 已提交
3394 3395
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
3396
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3397 3398
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
3399 3400
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
3413 3414 3415 3416 3417
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3418
                 bias=False,
3419
                 stride=-1,
3420
                 **xargs):
Q
qijun 已提交
3421
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
3422
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3423
        self.config.average_strategy = average_strategy
3424 3425
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3426
        self.config.trans_type = trans_type
3427
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3428 3429 3430 3431 3432 3433
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3434

Z
zhangjinchao01 已提交
3435 3436
@config_layer('cos')
class CosSimLayer(LayerBase):
3437
    def __init__(self, name, inputs, cos_scale=1, device=None):
Z
zhangjinchao01 已提交
3438 3439 3440 3441 3442 3443
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
3444
        self.config.cos_scale = cos_scale
Z
zhangjinchao01 已提交
3445 3446 3447 3448


@config_layer('tensor')
class TensorLayer(LayerBase):
3449
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
3450
        super(TensorLayer, self).__init__(
3451
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3452 3453
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
3454 3455
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3466
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3484
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3485 3486 3487
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3488
            else:
3489 3490
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3491 3492 3493 3494
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3495 3496 3497 3498
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3499 3500 3501
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3502
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3503 3504 3505
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3506
            elif isinstance(input, Projection):
Q
qijun 已提交
3507 3508 3509 3510 3511 3512
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3524 3525
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3537 3538 3539 3540 3541 3542
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3543

3544 3545 3546
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3547

Q
qijun 已提交
3548

Z
zhangjinchao01 已提交
3549 3550
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3551
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3552 3553
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3554

Z
zhangjinchao01 已提交
3555 3556
@config_layer('concat')
class ConcatenateLayer(LayerBase):
Q
qijun 已提交
3557
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3558
        config_assert(inputs, 'inputs cannot be empty')
3559
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
Z
zhangjinchao01 已提交
3560 3561 3562 3563
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
3564 3565 3566 3567 3568 3569
            assert self.get_input_layer(0).height == self.get_input_layer(
                input_index).height
            assert self.get_input_layer(0).width == self.get_input_layer(
                input_index).width
            assert self.get_input_layer(0).depth == self.get_input_layer(
                input_index).depth
Z
zhangjinchao01 已提交
3570 3571
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3572
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3573 3574
                size += input_layer.size

3575 3576 3577
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                    self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
3578 3579
        self.set_layer_size(size)

Q
qijun 已提交
3580

Z
zhangjinchao01 已提交
3581 3582 3583
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3584
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3585 3586 3587
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3588 3589

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3590 3591 3592 3593 3594 3595
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3596

Z
zhangjinchao01 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3617
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3618
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3619
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3620 3621
            self.create_input_parameter(input_index, psize, dims)

3622 3623 3624 3625 3626 3627 3628
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3629 3630 3631
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3632

Q
qijun 已提交
3633

Z
zhangjinchao01 已提交
3634 3635
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3636
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3637 3638
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3648

Z
zhangjinchao01 已提交
3649 3650
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3651 3652 3653 3654 3655 3656 3657 3658
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3659 3660 3661 3662 3663 3664 3665 3666
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3667
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3668 3669 3670 3671 3672
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3673

Z
zhangjinchao01 已提交
3674 3675
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3686 3687 3688
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3689 3690 3691 3692 3693
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3694 3695 3696
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3697

Z
zhangjinchao01 已提交
3698 3699 3700
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3701 3702 3703 3704
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3705 3706 3707 3708
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3709

Z
zhangjinchao01 已提交
3710 3711
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3712 3713 3714 3715 3716 3717 3718 3719
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3720 3721
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3722 3723 3724 3725
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3726 3727
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3728
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3729
        self.set_layer_size(size)
Q
qijun 已提交
3730
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3731 3732 3733
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3734 3735
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3736
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3737 3738
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3739 3740 3741

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3753 3754 3755 3756 3757 3758
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3759
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3760 3761 3762
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3763

Z
zhangjinchao01 已提交
3764 3765
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3766 3767 3768 3769 3770 3771 3772
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3773 3774
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3775 3776 3777
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3778 3779 3780 3781 3782
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3783
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3784 3785
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3786

Z
zhangjinchao01 已提交
3787 3788 3789 3790 3791 3792 3793
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3794 3795


Z
zhangjinchao01 已提交
3796 3797
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3798
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3799
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3800 3801
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3802
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3803 3804
        self.config.coeff = coeff

Q
qijun 已提交
3805

Z
zhangjinchao01 已提交
3806 3807 3808 3809 3810 3811 3812 3813
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3814 3815


Z
zhangjinchao01 已提交
3816 3817
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3818
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3819 3820 3821 3822 3823
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3824
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3825

Q
qijun 已提交
3826

Z
zhangjinchao01 已提交
3827 3828
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3829
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3830 3831 3832 3833
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3834

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3866 3867
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3868
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3869 3870 3871 3872
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


3873 3874 3875 3876 3877
@config_layer('switch_order')
class SwitchOrderLayer(LayerBase):
    def __init__(self, name, inputs, reshape, **xargs):
        super(SwitchOrderLayer, self).__init__(
            name, 'switch_order', 0, inputs=inputs, **xargs)
W
wanghaoshuang 已提交
3878 3879
        self.config.reshape_conf.height_axis.extend(reshape['height'])
        self.config.reshape_conf.width_axis.extend(reshape['width'])
3880 3881


Y
yangyaming 已提交
3882 3883
@config_layer('scale_sub_region')
class ScaleSubRegionLayer(LayerBase):
Y
yangyaming 已提交
3884
    def __init__(self, name, inputs, value, **xargs):
Y
yangyaming 已提交
3885 3886 3887 3888
        super(ScaleSubRegionLayer, self).__init__(
            name, 'scale_sub_region', 0, inputs=inputs, **xargs)
        scale_sub_region_conf = self.config.inputs[0].scale_sub_region_conf
        scale_sub_region_conf.value = value
Y
yangyaming 已提交
3889 3890 3891

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
Y
yangyaming 已提交
3892
        image_conf = scale_sub_region_conf.image_conf
Y
yangyaming 已提交
3893 3894 3895 3896
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)
Y
yangyaming 已提交
3897 3898
        self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
                           image_conf.channels)
Y
yangyaming 已提交
3899 3900


Z
zhangjinchao01 已提交
3901 3902
# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3903
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3904 3905 3906 3907
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3908
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3909
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3910

Q
qijun 已提交
3911

Z
zhangjinchao01 已提交
3912
@config_func
Q
qijun 已提交
3913
def ParameterHook(type, **kwargs):
3914
    if type == 'pruning':
Z
zhangjinchao01 已提交
3915 3916
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3917
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3918 3919
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3920
        return hook
3921 3922 3923 3924
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3925 3926 3927 3928 3929
    else:
        return None


@config_func
Q
qijun 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3951 3952
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3953 3954 3955 3956 3957 3958 3959

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3971 3972
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3973 3974 3975 3976 3977

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3978 3979 3980 3981
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3982

Q
qijun 已提交
3983 3984
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3985 3986 3987
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3988 3989 3990 3991 3992 3993
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3994 3995
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3996 3997
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3998 3999
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
4000 4001 4002 4003 4004 4005
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
4006 4007 4008
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
4009 4010 4011 4012
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
4013 4014 4015 4016 4017 4018 4019

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
4020 4021 4022 4023
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
4024 4025
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
4026 4027 4028 4029 4030

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
4031
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
4032 4033 4034 4035 4036

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
4037
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
4038 4039

    g_parameter_map[name] = para
X
xuwei06 已提交
4040 4041 4042 4043 4044
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
4045 4046 4047 4048 4049 4050 4051


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
4052

Z
zhangjinchao01 已提交
4053 4054 4055 4056 4057
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
4058

Z
zhangjinchao01 已提交
4059 4060 4061 4062 4063
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
4064

Z
zhangjinchao01 已提交
4065 4066 4067 4068 4069
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
4070

Z
zhangjinchao01 已提交
4071 4072 4073 4074 4075
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
4076

Z
zhangjinchao01 已提交
4077 4078 4079 4080 4081
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
4082

Z
zhangjinchao01 已提交
4083 4084 4085 4086 4087
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
4088

Z
zhangjinchao01 已提交
4089 4090 4091 4092 4093
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
4094

Z
zhangjinchao01 已提交
4095 4096 4097 4098 4099
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
4100

Z
zhangjinchao01 已提交
4101 4102 4103 4104 4105
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
4106

Z
zhangjinchao01 已提交
4107 4108 4109 4110 4111
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
4112

Z
zhangjinchao01 已提交
4113 4114 4115 4116 4117
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
4118 4119 4120
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
4121 4122
    return Import

Q
qijun 已提交
4123

X
xuwei06 已提交
4124
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
4125 4126 4127 4128 4129
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
4130
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
4153 4154 4155
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
4156

X
xuwei06 已提交
4157
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
4158

Q
qijun 已提交
4159
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
4160 4161 4162 4163

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
4164 4165
    start_pass=0, )

Z
zhangjinchao01 已提交
4166 4167 4168 4169 4170

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
4171 4172
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
4184

Z
zhangjinchao01 已提交
4185 4186 4187 4188
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
4189

Z
zhangjinchao01 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
4199

Z
zhangjinchao01 已提交
4200 4201 4202 4203
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
4204

Z
zhangjinchao01 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
4220
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
4221 4222 4223 4224 4225

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
4226

Z
zhangjinchao01 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
4243

Z
zhangjinchao01 已提交
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
4256

Z
zhangjinchao01 已提交
4257 4258 4259 4260
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
4261

4262
_parse_config_hooks = set()
Y
Yu Yang 已提交
4263 4264


4265 4266 4267 4268 4269 4270 4271
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
4272

Y
Yu Yang 已提交
4273

4274
def update_g_config():
Z
zhangjinchao01 已提交
4275
    '''
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


4299
def begin_parse():
Z
zhangjinchao01 已提交
4300
    init_config_environment()
4301 4302
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
4303 4304 4305 4306 4307

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
4317 4318 4319 4320
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
4321

4322
    begin_parse()
X
xuwei06 已提交
4323 4324
    config_args = {}

Z
zhangjinchao01 已提交
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

4337 4338
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
4339
            make_config_environment("", config_args))
4340
        trainer_config()
H
hanchao 已提交
4341
    else:
4342 4343
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
4344

4345
    return update_g_config()
Z
zhangjinchao01 已提交
4346 4347


4348
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
4349
    try:
4350
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
4351 4352 4353 4354 4355 4356
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
4357

Z
zhangjinchao01 已提交
4358 4359 4360 4361 4362 4363 4364 4365
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise