cross_entropy_op.cu 5.9 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15 16 17 18 19 20 21 22
#include "paddle/framework/op_registry.h"
#include "paddle/platform/assert.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

23
template <typename T>
24
__host__ __device__ T tolerable_value(const T x) {
D
dangqingqing 已提交
25 26
  PADDLE_ASSERT(std::is_floating_point<T>::value);
  const T kApproInf = 1e20;
27
  if (x == INFINITY) {
D
dangqingqing 已提交
28
    return kApproInf;
29
  }
30
  if (x == -INFINITY) {
D
dangqingqing 已提交
31 32
    return -kApproInf;
  }
33
  return x;
D
dangqingqing 已提交
34
}
35

36 37 38 39 40 41 42 43
template <typename T>
__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
                                   const int N, const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < D);
44 45 46 47 48 49 50 51 52 53 54 55 56 57
    Y[i] = -tolerable_value(log(X[i * D + label[i]]));
  }
}

template <typename T>
__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
                                       const int N, const int D) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    T sum = static_cast<T>(0);
    for (int j = 0; j < D; j++) {
      sum += label[i * D + j] * log(X[i * D + j]);
    }
    Y[i] = -tolerable_value(sum);
58 59 60
  }
}

61
// TODO(qingqing): make zero setting an common function.
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
template <typename T>
__global__ void zero(T* X, const int N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    X[i] = 0.0;
  }
}

template <typename T>
__global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
                                           const int* label, const int N,
                                           const int D) {
  // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file.
  // CUDA_1D_KERNEL_LOOP(i, N) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    int idx = i * D + label[i];
    dX[idx] = -dY[i] / X[idx];
  }
}

template <typename T>
84 85 86 87 88 89 90 91 92 93 94 95 96 97
__global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X,
                                               const T* label, const int N,
                                               const int D) {
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
       i += blockDim.x * gridDim.x) {
    for (int j = 0; j < D; ++j) {
      int idx = i * D + j;
      dX[idx] = -label[idx] * dY[i] / X[idx];
    }
  }
}

template <typename T>
class CrossEntropyOpCUDAKernel : public framework::OpKernel {
98 99 100 101 102
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");

103 104 105 106 107 108 109
    auto x = ctx.Input<Tensor>("X");
    auto y = ctx.Output<Tensor>("Y");
    auto label = ctx.Input<Tensor>("Label");

    auto* x_data = x->data<T>();
    y->mutable_data<T>(ctx.GetPlace());
    auto* y_data = y->data<T>();
110

111 112
    int n = x->dims()[0];
    int d = x->dims()[1];
113
    int block = 512;
114
    int grid = (n + block - 1) / block;
115 116
    // TODO(qingqing) launch kernel on specified stream
    // base on ExecutionContext.
117 118 119 120 121 122 123 124 125 126 127
    int label_rank = label->dims().size();
    if (label_rank == 2) {
      // soft cross entropy
      auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
      SoftCrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n,
                                                 d);
    } else {
      // normal cross entropy
      auto* label_data = ctx.Input<Tensor>("Label")->data<int>();
      CrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n, d);
    }
128 129 130 131
  }
};

template <typename T>
132
class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
133 134 135 136 137
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use GPUPlace.");

138 139 140 141
    auto x = ctx.Input<Tensor>("X");
    auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto label = ctx.Input<Tensor>("Label");
142

143 144 145
    auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto* dy_data = dy->data<T>();
    auto* x_data = x->data<T>();
146

147 148
    int n = x->dims()[0];
    int d = x->dims()[1];
149
    int block = 512;
150 151 152
    int grid = (n * d + block - 1) / block;
    zero<T><<<grid, block>>>(dx_data, n * d);
    grid = (n + block - 1) / block;
153 154
    // TODO(qingqing): launch kernel on specified stream
    // base on ExecutionContext.
155 156 157 158 159 160 161 162 163 164 165 166
    int label_rank = label->dims().size();
    if (label_rank == 2) {
      // soft cross entropy
      auto* label_data = label->data<T>();
      SoftCrossEntropyGradientKernel<T><<<grid, block>>>(
          dx_data, dy_data, x_data, label_data, n, d);
    } else {
      // normal cross entropy
      auto* label_data = label->data<int>();
      CrossEntropyGradientKernel<T><<<grid, block>>>(dx_data, dy_data, x_data,
                                                     label_data, n, d);
    }
167 168 169 170 171
  }
};

}  // namespace operators
}  // namespace paddle
Q
Qiao Longfei 已提交
172

D
dongzhihong 已提交
173
namespace ops = paddle::operators;
174 175 176
REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(cross_entropy_grad,
                       ops::CrossEntropyGradientOpCUDAKernel<float>);