test_weight_normalization.py 4.6 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy
import collections
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
from paddle.v2.fluid.initializer import ConstantInitializer
from paddle.v2.fluid.param_attr import WeightNormParamAttr


class TestWeightNormalization(unittest.TestCase):
    batch_size = 3
    hidden_size = 5
    data_desc = (['x', [10], 0], )

    @classmethod
    def setUpClass(cls):
        cls.set_program()

    @classmethod
    def set_program(cls):
        data = fluid.layers.data(
            name=cls.data_desc[0][0], shape=cls.data_desc[0][1])
        out = fluid.layers.fc(input=data,
                              size=cls.hidden_size,
                              param_attr=WeightNormParamAttr(
                                  dim=None,
                                  name='weight_norm_param',
                                  initializer=ConstantInitializer(1.0)),
                              bias_attr=False,
                              act=None)
        loss = fluid.layers.reduce_sum(out)
        fluid.backward.append_backward(loss=loss)
        cls.fetch_list = [
            'weight_norm_param_g', 'weight_norm_param_v',
            'weight_norm_param_g@GRAD'
        ]

    def run_program(self):
        outputs = []
        places = [core.CPUPlace()]
55
        if core.is_compiled_with_cuda():
G
guosheng 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            places.append(core.CUDAPlace(0))
        for place in places:
            self.set_inputs(place)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output = exe.run(fluid.default_main_program(),
                             feed=self.inputs,
                             fetch_list=self.fetch_list,
                             return_numpy=False)
            outputs.append(output)
        self.actual_outputs = outputs

    def set_data(self):
        self.data = collections.OrderedDict()
        for desc in self.data_desc:
            data_name = desc[0]
            data_shape = desc[1]
            data_lod_level = desc[2]
            data_lod = []
            for i in range(data_lod_level):
                lod_level_i = numpy.random.randint(
                    low=1,
                    high=5,
                    size=self.batch_size if i == 0 else lod_level_i[-1])
                lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist()
                data_lod.append(lod_level_i)
            data_value = numpy.random.random(
                size=[data_lod[-1][-1] if data_lod else self.batch_size
                      ] + data_shape).astype('float32')
            self.data[data_name] = (data_value, data_lod)

    def set_inputs(self, place):
        self.inputs = {}
        for desc in self.data_desc:
            tensor = fluid.Tensor()
            tensor.set(self.data[desc[0]][0], place)
            if self.data[desc[0]][1]:
                tensor.set_lod(self.data[desc[0]][1])
            self.inputs[desc[0]] = tensor

    def weight_normalize(self):
        v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1],
                        self.hidden_size))
        g = numpy.linalg.norm(v, axis=None, keepdims=True)
        w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True)
        x = self.data[self.data_desc[0][0]][0]
        out = numpy.dot(x, w)
        g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm(
            v, axis=None, keepdims=True))).sum(axis=None, keepdims=True)
        return g, v, g_grad

    def test_weight_normalization(self):
        self.set_data()
        self.run_program()
        expect_output = self.weight_normalize()
        for actual_output in self.actual_outputs:
            [
                self.assertTrue(
                    numpy.allclose(
                        numpy.array(actual_output), expect_output, atol=0.001))
                for expect_output, actual_output in zip(expect_output,
                                                        actual_output)
            ]


if __name__ == '__main__':
    unittest.main()