simota_assigner.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
import paddle.nn.functional as F
import paddle.nn as nn

from ppdet.modeling.losses.varifocal_loss import varifocal_loss
from ppdet.modeling.bbox_utils import batch_bbox_overlaps
from ppdet.core.workspace import register


@register
class SimOTAAssigner(object):
    """Computes matching between predictions and ground truth.

    Args:
        center_radius (int | float, optional): Ground truth center size
            to judge whether a prior is in center. Default 2.5.
        candidate_topk (int, optional): The candidate top-k which used to
            get top-k ious to calculate dynamic-k. Default 10.
        iou_weight (int | float, optional): The scale factor for regression
            iou cost. Default 3.0.
        cls_weight (int | float, optional): The scale factor for classification
            cost. Default 1.0.
        num_classes (int): The num_classes of dataset.
        use_vfl (int): Whether to use varifocal_loss when calculating the cost matrix.
    """
    __shared__ = ['num_classes']

    def __init__(self,
                 center_radius=2.5,
                 candidate_topk=10,
                 iou_weight=3.0,
                 cls_weight=1.0,
                 num_classes=80,
                 use_vfl=True):
        self.center_radius = center_radius
        self.candidate_topk = candidate_topk
        self.iou_weight = iou_weight
        self.cls_weight = cls_weight
        self.num_classes = num_classes
        self.use_vfl = use_vfl

    def get_in_gt_and_in_center_info(self, priors, gt_bboxes):
        num_gt = gt_bboxes.shape[0]

        repeated_x = priors[:, 0].unsqueeze(1).tile([1, num_gt])
        repeated_y = priors[:, 1].unsqueeze(1).tile([1, num_gt])
        repeated_stride_x = priors[:, 2].unsqueeze(1).tile([1, num_gt])
        repeated_stride_y = priors[:, 3].unsqueeze(1).tile([1, num_gt])

        # is prior centers in gt bboxes, shape: [n_prior, n_gt]
        l_ = repeated_x - gt_bboxes[:, 0]
        t_ = repeated_y - gt_bboxes[:, 1]
        r_ = gt_bboxes[:, 2] - repeated_x
        b_ = gt_bboxes[:, 3] - repeated_y

        deltas = paddle.stack([l_, t_, r_, b_], axis=1)
        is_in_gts = deltas.min(axis=1) > 0
        is_in_gts_all = is_in_gts.sum(axis=1) > 0

        # is prior centers in gt centers
        gt_cxs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0
        gt_cys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0
        ct_box_l = gt_cxs - self.center_radius * repeated_stride_x
        ct_box_t = gt_cys - self.center_radius * repeated_stride_y
        ct_box_r = gt_cxs + self.center_radius * repeated_stride_x
        ct_box_b = gt_cys + self.center_radius * repeated_stride_y

        cl_ = repeated_x - ct_box_l
        ct_ = repeated_y - ct_box_t
        cr_ = ct_box_r - repeated_x
        cb_ = ct_box_b - repeated_y

        ct_deltas = paddle.stack([cl_, ct_, cr_, cb_], axis=1)
        is_in_cts = ct_deltas.min(axis=1) > 0
        is_in_cts_all = is_in_cts.sum(axis=1) > 0

        # in boxes or in centers, shape: [num_priors]
        is_in_gts_or_centers = paddle.logical_or(is_in_gts_all, is_in_cts_all)

        is_in_gts_or_centers_inds = paddle.nonzero(
            is_in_gts_or_centers).squeeze(1)

        # both in boxes and centers, shape: [num_fg, num_gt]
        is_in_boxes_and_centers = paddle.logical_and(
            paddle.gather(
                is_in_gts.cast('int'), is_in_gts_or_centers_inds,
                axis=0).cast('bool'),
            paddle.gather(
                is_in_cts.cast('int'), is_in_gts_or_centers_inds,
                axis=0).cast('bool'))
        return is_in_gts_or_centers, is_in_boxes_and_centers

    def dynamic_k_matching(self, cost, pairwise_ious, num_gt, valid_mask):
        matching_matrix = np.zeros_like(cost.numpy())
        # select candidate topk ious for dynamic-k calculation
        topk_ious, _ = paddle.topk(pairwise_ious, self.candidate_topk, axis=0)
        # calculate dynamic k for each gt
        dynamic_ks = paddle.clip(topk_ious.sum(0).cast('int'), min=1)
        for gt_idx in range(num_gt):
            _, pos_idx = paddle.topk(
                cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
            matching_matrix[:, gt_idx][pos_idx.numpy()] = 1.0

        del topk_ious, dynamic_ks, pos_idx

        prior_match_gt_mask = matching_matrix.sum(1) > 1
        if prior_match_gt_mask.sum() > 0:
            cost = cost.numpy()
            cost_argmin = np.argmin(cost[prior_match_gt_mask, :], axis=1)
            matching_matrix[prior_match_gt_mask, :] *= 0.0
            matching_matrix[prior_match_gt_mask, cost_argmin] = 1.0
        # get foreground mask inside box and center prior
        fg_mask_inboxes = matching_matrix.sum(1) > 0.0
        valid_mask[valid_mask.copy()] = fg_mask_inboxes

        matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)

        matched_gt_inds = paddle.to_tensor(
            matched_gt_inds, place=pairwise_ious.place)

G
Guanghua Yu 已提交
136
        return matched_gt_inds, valid_mask
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    def get_sample(self, assign_gt_inds, gt_bboxes):
        pos_inds = np.unique(np.nonzero(assign_gt_inds > 0)[0])
        neg_inds = np.unique(np.nonzero(assign_gt_inds == 0)[0])
        pos_assigned_gt_inds = assign_gt_inds[pos_inds] - 1

        if gt_bboxes.size == 0:
            # hack for index error case
            assert pos_assigned_gt_inds.size == 0
            pos_gt_bboxes = np.empty_like(gt_bboxes).reshape(-1, 4)
        else:
            if len(gt_bboxes.shape) < 2:
                gt_bboxes = gt_bboxes.resize(-1, 4)
            pos_gt_bboxes = gt_bboxes[pos_assigned_gt_inds, :]
        return pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds

    def __call__(self,
                 pred_scores,
                 priors,
                 decoded_bboxes,
                 gt_bboxes,
                 gt_labels,
                 eps=1e-7):
        """Assign gt to priors using SimOTA.
        TODO: add comment.
        Returns:
            assign_result: The assigned result.
        """

        INF = 100000000
        num_gt = gt_bboxes.shape[0]
        num_bboxes = decoded_bboxes.shape[0]

        # assign 0 by default
        assigned_gt_inds = paddle.full(
            (num_bboxes, ), 0, dtype=paddle.int64).numpy()
        if num_gt == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
175 176 177 178 179
            priors = priors.numpy()
            labels = np.ones([num_bboxes], dtype=np.int64) * self.num_classes
            label_weights = np.ones([num_bboxes], dtype=np.float32)
            bbox_targets = np.zeros_like(priors)
            return priors, labels, label_weights, bbox_targets, 0
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

        valid_mask, is_in_boxes_and_center = self.get_in_gt_and_in_center_info(
            priors, gt_bboxes)

        valid_mask_inds = paddle.nonzero(valid_mask).squeeze(1)
        valid_decoded_bbox = decoded_bboxes[valid_mask_inds]
        valid_pred_scores = pred_scores[valid_mask_inds]
        num_valid = valid_decoded_bbox.shape[0]

        pairwise_ious = batch_bbox_overlaps(valid_decoded_bbox, gt_bboxes)
        if self.use_vfl:
            gt_vfl_labels = gt_labels.squeeze(-1).unsqueeze(0).tile(
                [num_valid, 1]).reshape([-1])
            valid_pred_scores = valid_pred_scores.unsqueeze(1).tile(
                [1, num_gt, 1]).reshape([-1, self.num_classes])
            vfl_score = np.zeros(valid_pred_scores.shape)
            vfl_score[np.arange(0, vfl_score.shape[0]), gt_vfl_labels.numpy(
            )] = pairwise_ious.reshape([-1])
            vfl_score = paddle.to_tensor(vfl_score)
            losses_vfl = varifocal_loss(
                valid_pred_scores, vfl_score,
                use_sigmoid=False).reshape([num_valid, num_gt])
            losses_giou = batch_bbox_overlaps(
                valid_decoded_bbox, gt_bboxes, mode='giou')
            cost_matrix = (
                losses_vfl * self.cls_weight + losses_giou * self.iou_weight +
                paddle.logical_not(is_in_boxes_and_center).cast('float32') * INF
            )
        else:
G
Guanghua Yu 已提交
209
            iou_cost = -paddle.log(pairwise_ious + eps)
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
            gt_onehot_label = (F.one_hot(
                gt_labels.squeeze(-1).cast(paddle.int64),
                pred_scores.shape[-1]).cast('float32').unsqueeze(0).tile(
                    [num_valid, 1, 1]))

            valid_pred_scores = valid_pred_scores.unsqueeze(1).tile(
                [1, num_gt, 1])
            cls_cost = F.binary_cross_entropy(
                valid_pred_scores, gt_onehot_label, reduction='none').sum(-1)

            cost_matrix = (
                cls_cost * self.cls_weight + iou_cost * self.iou_weight +
                paddle.logical_not(is_in_boxes_and_center).cast('float32') * INF
            )

G
Guanghua Yu 已提交
225
        matched_gt_inds, valid_mask = \
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            self.dynamic_k_matching(
                cost_matrix, pairwise_ious, num_gt, valid_mask.numpy())

        # assign results
        gt_labels = gt_labels.numpy()
        priors = priors.numpy()
        matched_gt_inds = matched_gt_inds.numpy()
        gt_bboxes = gt_bboxes.numpy()

        assigned_gt_inds[valid_mask] = matched_gt_inds + 1

        pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds \
            = self.get_sample(assigned_gt_inds, gt_bboxes)

        num_cells = priors.shape[0]
        bbox_targets = np.zeros_like(priors)
        bbox_weights = np.zeros_like(priors)
        labels = np.ones([num_cells], dtype=np.int64) * self.num_classes
        label_weights = np.zeros([num_cells], dtype=np.float32)

        if len(pos_inds) > 0:
            pos_bbox_targets = pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if not np.any(gt_labels):
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels.squeeze(-1)[pos_assigned_gt_inds]

            label_weights[pos_inds] = 1.0
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        pos_num = max(pos_inds.size, 1)

        return priors, labels, label_weights, bbox_targets, pos_num