detection_map_op.h 12.0 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T>
inline void GetAccumulation(std::vector<std::pair<T, int>> in_pairs,
                            std::vector<int>* accu_vec) {
  std::stable_sort(in_pairs.begin(), in_pairs.end(),
                   math::SortScorePairDescend<int>);
  accu_vec->clear();
  size_t sum = 0;
  for (size_t i = 0; i < in_pairs.size(); ++i) {
    // auto score = in_pairs[i].first;
    auto count = in_pairs[i].second;
    sum += count;
    accu_vec->push_back(sum);
  }
}

template <typename Place, typename T>
class DetectionMAPOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_label = ctx.Input<framework::LoDTensor>("Label");
    auto* input_detect = ctx.Input<framework::Tensor>("Detect");
    auto* map_out = ctx.Output<framework::Tensor>("MAP");

    float overlap_threshold = ctx.Attr<float>("overlap_threshold");
    float evaluate_difficult = ctx.Attr<bool>("evaluate_difficult");
    std::string ap_type = ctx.Attr<std::string>("ap_type");

    auto label_lod = input_label->lod();
    PADDLE_ENFORCE_EQ(label_lod.size(), 1UL,
                      "Only support one level sequence now.");
    auto batch_size = label_lod[0].size() - 1;

    std::vector<std::map<int, std::vector<operators::math::BBox<T>>>> gt_bboxes;

    std::vector<
        std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>>>
        detect_bboxes;

    if (platform::is_gpu_place(ctx.GetPlace())) {
      framework::LoDTensor input_label_cpu;
      framework::Tensor input_detect_cpu;
      input_label_cpu.set_lod(input_label->lod());
      input_label_cpu.Resize(input_label->dims());
      input_detect_cpu.Resize(input_detect->dims());
      input_label_cpu.mutable_data<T>(platform::CPUPlace());
      input_detect_cpu.mutable_data<T>(platform::CPUPlace());
      framework::CopyFrom(*input_label, platform::CPUPlace(),
                          ctx.device_context(), &input_label_cpu);
      framework::CopyFrom(*input_detect, platform::CPUPlace(),
                          ctx.device_context(), &input_detect_cpu);
      GetBBoxes(input_label_cpu, input_detect_cpu, gt_bboxes, detect_bboxes);
    } else {
      GetBBoxes(*input_label, *input_detect, gt_bboxes, detect_bboxes);
    }

    std::map<int, int> label_pos_count;
    std::map<int, std::vector<std::pair<T, int>>> true_pos;
    std::map<int, std::vector<std::pair<T, int>>> false_pos;

    CalcTrueAndFalsePositive(batch_size, evaluate_difficult, overlap_threshold,
                             gt_bboxes, detect_bboxes, label_pos_count,
                             true_pos, false_pos);

    T map = CalcMAP(ap_type, label_pos_count, true_pos, false_pos);

    T* map_data = nullptr;
    framework::Tensor map_cpu;
    map_out->mutable_data<T>(ctx.GetPlace());
    if (platform::is_gpu_place(ctx.GetPlace())) {
      map_data = map_cpu.mutable_data<T>(map_out->dims(), platform::CPUPlace());
      map_data[0] = map;
      framework::CopyFrom(map_cpu, platform::CPUPlace(), ctx.device_context(),
                          map_out);
    } else {
      map_data = map_out->mutable_data<T>(ctx.GetPlace());
      map_data[0] = map;
    }
  }

 protected:
  void GetBBoxes(
      const framework::LoDTensor& input_label,
      const framework::Tensor& input_detect,
      std::vector<std::map<int, std::vector<operators::math::BBox<T>>>>&
          gt_bboxes,
      std::vector<
          std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>>>&
          detect_bboxes) const {
    const T* label_data = input_label.data<T>();
    const T* detect_data = input_detect.data<T>();

    auto label_lod = input_label.lod();
    auto batch_size = label_lod[0].size() - 1;
    auto label_index = label_lod[0];

    for (size_t n = 0; n < batch_size; ++n) {
      std::map<int, std::vector<operators::math::BBox<T>>> bboxes;
      for (int i = label_index[n]; i < label_index[n + 1]; ++i) {
        std::vector<operators::math::BBox<T>> bbox;
        math::GetBBoxFromLabelData<T>(label_data + i * 6, 1, bbox);
        int label = static_cast<int>(label_data[i * 6]);
        bboxes[label].push_back(bbox[0]);
      }
      gt_bboxes.push_back(bboxes);
    }

    size_t n = 0;
    size_t detect_box_count = input_detect.dims()[0];
    for (size_t img_id = 0; img_id < batch_size; ++img_id) {
      std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>> bboxes;
      size_t cur_img_id = static_cast<size_t>((detect_data + n * 7)[0]);
      while (cur_img_id == img_id && n < detect_box_count) {
        std::vector<T> label;
        std::vector<T> score;
        std::vector<operators::math::BBox<T>> bbox;
        math::GetBBoxFromDetectData<T>(detect_data + n * 7, 1, label, score,
                                       bbox);
        bboxes[label[0]].push_back(std::make_pair(score[0], bbox[0]));
        ++n;
        cur_img_id = static_cast<size_t>((detect_data + n * 7)[0]);
      }
      detect_bboxes.push_back(bboxes);
    }
  }

  void CalcTrueAndFalsePositive(
      size_t batch_size, bool evaluate_difficult, float overlap_threshold,
      const std::vector<std::map<int, std::vector<operators::math::BBox<T>>>>&
          gt_bboxes,
      const std::vector<
          std::map<int, std::vector<std::pair<T, operators::math::BBox<T>>>>>&
          detect_bboxes,
      std::map<int, int>& label_pos_count,
      std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
    for (size_t n = 0; n < batch_size; ++n) {
      auto image_gt_bboxes = gt_bboxes[n];
      for (auto it = image_gt_bboxes.begin(); it != image_gt_bboxes.end();
           ++it) {
        size_t count = 0;
        auto labeled_bboxes = it->second;
        if (evaluate_difficult) {
          count = labeled_bboxes.size();
        } else {
          for (size_t i = 0; i < labeled_bboxes.size(); ++i)
            if (!(labeled_bboxes[i].is_difficult)) ++count;
        }
        if (count == 0) {
          continue;
        }
        int label = it->first;
        if (label_pos_count.find(label) == label_pos_count.end()) {
          label_pos_count[label] = count;
        } else {
          label_pos_count[label] += count;
        }
      }
    }

    for (size_t n = 0; n < detect_bboxes.size(); ++n) {
      auto image_gt_bboxes = gt_bboxes[n];
      auto detections = detect_bboxes[n];

      if (image_gt_bboxes.size() == 0) {
        for (auto it = detections.begin(); it != detections.end(); ++it) {
          auto pred_bboxes = it->second;
          int label = it->first;
          for (size_t i = 0; i < pred_bboxes.size(); ++i) {
            auto score = pred_bboxes[i].first;
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
        }
        continue;
      }

      for (auto it = detections.begin(); it != detections.end(); ++it) {
        int label = it->first;
        auto pred_bboxes = it->second;
        if (image_gt_bboxes.find(label) == image_gt_bboxes.end()) {
          for (size_t i = 0; i < pred_bboxes.size(); ++i) {
            auto score = pred_bboxes[i].first;
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
          continue;
        }

        auto matched_bboxes = image_gt_bboxes.find(label)->second;
        std::vector<bool> visited(matched_bboxes.size(), false);
        // Sort detections in descend order based on scores
        std::sort(pred_bboxes.begin(), pred_bboxes.end(),
                  math::SortScorePairDescend<operators::math::BBox<T>>);
        for (size_t i = 0; i < pred_bboxes.size(); ++i) {
          float max_overlap = -1.0;
          size_t max_idx = 0;
          auto score = pred_bboxes[i].first;
          for (size_t j = 0; j < matched_bboxes.size(); ++j) {
            float overlap =
                JaccardOverlap(pred_bboxes[i].second, matched_bboxes[j]);
            if (overlap > max_overlap) {
              max_overlap = overlap;
              max_idx = j;
            }
          }
          if (max_overlap > overlap_threshold) {
            bool match_evaluate_difficult =
                evaluate_difficult ||
                (!evaluate_difficult && !matched_bboxes[max_idx].is_difficult);
            if (match_evaluate_difficult) {
              if (!visited[max_idx]) {
                true_pos[label].push_back(std::make_pair(score, 1));
                false_pos[label].push_back(std::make_pair(score, 0));
                visited[max_idx] = true;
              } else {
                true_pos[label].push_back(std::make_pair(score, 0));
                false_pos[label].push_back(std::make_pair(score, 1));
              }
            }
          } else {
            true_pos[label].push_back(std::make_pair(score, 0));
            false_pos[label].push_back(std::make_pair(score, 1));
          }
        }
      }
    }
  }

  T CalcMAP(
      std::string ap_type, const std::map<int, int>& label_pos_count,
      const std::map<int, std::vector<std::pair<T, int>>>& true_pos,
      const std::map<int, std::vector<std::pair<T, int>>>& false_pos) const {
    T mAP = 0.0;
    int count = 0;
    for (auto it = label_pos_count.begin(); it != label_pos_count.end(); ++it) {
      int label = it->first;
      int label_num_pos = it->second;
      if (label_num_pos == 0 || true_pos.find(label) == true_pos.end())
        continue;
      auto label_true_pos = true_pos.find(label)->second;
      auto label_false_pos = false_pos.find(label)->second;
      // Compute average precision.
      std::vector<int> tp_sum;
      GetAccumulation<T>(label_true_pos, &tp_sum);
      std::vector<int> fp_sum;
      GetAccumulation<T>(label_false_pos, &fp_sum);
      std::vector<float> precision, recall;
      size_t num = tp_sum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
        // CHECK_LE(tpCumSum[i], labelNumPos);
        precision.push_back(static_cast<float>(tp_sum[i]) /
                            static_cast<float>(tp_sum[i] + fp_sum[i]));
        recall.push_back(static_cast<float>(tp_sum[i]) / label_num_pos);
      }
      // VOC2007 style
      if (ap_type == "11point") {
        std::vector<float> max_precisions(11, 0.0);
        int start_idx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = start_idx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              start_idx = i;
              if (j > 0) max_precisions[j - 1] = max_precisions[j];
              break;
            } else {
              if (max_precisions[j] < precision[i])
                max_precisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += max_precisions[j] / 11;
        ++count;
      } else if (ap_type == "Integral") {
        // Nature integral
        float average_precisions = 0.;
        float prev_recall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prev_recall) > 1e-6)
            average_precisions += precision[i] * fabs(recall[i] - prev_recall);
          prev_recall = recall[i];
        }
        mAP += average_precisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << ap_type;
      }
    }
    if (count != 0) mAP /= count;
    return mAP * 100;
  }
};  // namespace operators

}  // namespace operators
}  // namespace paddle