pybind.cc 19.0 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
22
#include "paddle/framework/prune.h"
Q
qijun 已提交
23
#include "paddle/framework/selected_rows.h"
24
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
25
#include "paddle/operators/cond_op.h"
26
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
28
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
29
#include "paddle/platform/enforce.h"
Q
qijun 已提交
30
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
31
#include "paddle/pybind/exception.h"
Q
qijun 已提交
32
#include "paddle/pybind/pybind.h"
33
#include "paddle/pybind/tensor_py.h"
34
#include "paddle/string/to_string.h"
35

36
namespace paddle {
37
namespace pybind {
38 39 40 41 42
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
43
bool IsCompileGPU() {
44
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
45 46 47 48 49 50
  return false;
#else
  return true;
#endif
}

51
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
52
  py::module m("core", "C++ core of PaddlePaddle");
53

54 55 56 57
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
58 59
  BindException(m);

60 61 62
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
63
      .def("get_dims",
64
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
65
      .def("set_dims",
Q
qijun 已提交
66
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
67
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
68 69
           })
      .def("alloc_float",
Y
Yu Yang 已提交
70
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
71
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
72
           })
Q
qijun 已提交
73
      .def("alloc_float",
Y
Yu Yang 已提交
74
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
75
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
76 77
           })
      .def("alloc_int",
Y
Yu Yang 已提交
78
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
79
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
80
           })
Q
qijun 已提交
81
      .def("alloc_int",
Y
Yu Yang 已提交
82
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
83
             self.mutable_data<int>(place);
Q
qijun 已提交
84
           })
Y
Yu Yang 已提交
85 86
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
87
      .def("set", PyCPUTensorSetFromArray<double>)
88
      .def("set", PyCPUTensorSetFromArray<int64_t>)
89
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
90 91
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
92
      .def("set", PyCUDATensorSetFromArray<double>)
93
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
94
#endif
95
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
96 97 98 99 100
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
101

102
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
103 104
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
105 106 107
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
108
#ifndef PADDLE_WITH_CUDA
109
            new (&instance) LoDTensor(lod);
110
#else
Y
Yu Yang 已提交
111
             LoD new_lod;
112 113
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
114
             new (&instance) LoDTensor(new_lod);
115
#endif
116
          })
Y
Yu Yang 已提交
117
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
118
      .def("set_lod",
119
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
120
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
121
             self.set_lod(lod);
122
#else
Y
Yu Yang 已提交
123
             LoD new_lod;
124 125 126 127
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
128
           })
129
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
130
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
131
        return self.lod();
132 133 134 135 136
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
137
               [](Vector<size_t> item) ->
138 139 140 141 142 143 144 145
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
146 147
      });

Q
qijun 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
161 162 163 164 165 166 167 168 169
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
170 171 172 173 174 175 176 177 178 179 180
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
181

182
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
183 184 185

All parameter, weight, gradient are variables in Paddle.
)DOC")
186
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
187
      .def("set_int",
188 189
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
190 191 192 193 194 195 196
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
197
      .def("get_tensor",
198 199
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
200 201
           },
           py::return_value_policy::reference)
Q
qijun 已提交
202 203 204 205 206
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
207
      .def("get_net",
D
dongzhihong 已提交
208 209
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
210
           },
Y
Yu Yang 已提交
211
           py::return_value_policy::reference);
212

213
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
214
      .def("var",
215
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
216
             return self.Var(name);
Y
Yu Yang 已提交
217
           },
218
           py::return_value_policy::reference)
219
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
220
      .def(py::init<>())
221
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
222
           py::return_value_policy::reference)
Y
Yu Yang 已提交
223
      .def("drop_kids", &Scope::DropKids);
224

Y
Yu Yang 已提交
225 226
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
227 228
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
229 230 231 232 233 234 235 236 237 238
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
239 240
    return ret_values;
  });
241 242 243 244 245 246 247 248 249 250
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
      prog_with_targets.Block(t[0])->Op(t[1])->MarkAsTarget();
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
251 252 253
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
254 255
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
256
  // clang-format off
Y
Yu Yang 已提交
257
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
258 259
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
260
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
261 262 263 264 265
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
266
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
267
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
268
#else
Q
qijun 已提交
269
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
270
#endif
Q
qijun 已提交
271
                  });
Q
qijun 已提交
272
  // clang-format on
Q
qijun 已提交
273

274 275 276
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
277

278 279 280
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
281

Y
Yu Yang 已提交
282 283 284 285 286 287 288 289 290 291 292
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
293 294 295 296 297 298 299 300 301
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
302
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
303 304 305 306 307 308
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
309
      .def("run",
310
           [](OperatorBase &self, const Scope &scope,
311 312 313 314
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
315 316 317 318 319 320 321
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
322 323
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
324
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
325
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
326 327 328 329
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
330

Y
Yu Yang 已提交
331 332 333 334 335 336 337
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
338 339
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
340 341 342 343
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
395
  // recurrent_op
Y
Yu Yang 已提交
396 397 398 399 400 401 402 403 404 405
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
406
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
407 408
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
409 410 411 412
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
413

414 415 416 417 418 419 420 421 422 423
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
424
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
425 426 427
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
428
      .def("set_step_unit",
429
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
430
               -> void { self.rnn.SetStepUnit(net.Clone()); })
431 432
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
433
               -> const TensorArray & { return self.rnn.state(name); })
434 435
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
436
               -> const TensorArray & { return self.rnn.step_input(name); })
437 438
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
439
               -> const TensorArray & { return self.rnn.step_output(name); });
440

Z
cond op  
zchen0211 已提交
441 442 443 444 445 446 447 448 449 450
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
451
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
452 453 454 455 456 457 458 459 460 461 462
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
463 464
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
Y
Yu Yang 已提交
465 466 467 468
      .def("run", [](Executor &self, ProgramDescBind *program_bind,
                     Scope *scope, int block_id) {
        self.Run(*program_bind->Proto(), scope, block_id);
      });
F
fengjiayi 已提交
469

470 471
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
472
  m.def("is_compile_gpu", IsCompileGPU);
473
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
474
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
475

F
fengjiayi 已提交
476 477 478 479
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
480

Y
Yu Yang 已提交
481 482
  m.def("op_support_gpu", OpSupportGPU);

483
  return m.ptr();
L
Luo Tao 已提交
484
}
485
}  // namespace pybind
486
}  // namespace paddle