README.md 20.7 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
English | [简体中文](README_cn.md)

# PP-YOLO

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
- [Future Work](#Future_Work)
- [Appendix](#Appendix)

## Introduction

14
[PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 2.0.2(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-develop) is required to run this PP-YOLO。
W
wangxinxin08 已提交
15 16 17 18

PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.

<div align="center">
19
  <img src="../../docs/images/ppyolo_map_fps.png" width=500 />
W
wangxinxin08 已提交
20 21
</div>

22
PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following methods:
W
wangxinxin08 已提交
23 24 25 26 27 28 29 30 31 32 33

- Better backbone: ResNet50vd-DCN
- Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU
- [Drop Block](https://arxiv.org/abs/1810.12890)
- [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp)
- [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf)
- [Grid Sensitive](https://arxiv.org/abs/2004.10934)
- [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf)
- [CoordConv](https://arxiv.org/abs/1807.03247)
- [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729)
- Better ImageNet pretrain weights
34 35 36
- [PAN](https://arxiv.org/abs/1803.01534)
- Iou aware Loss
- larger input size
W
wangxinxin08 已提交
37 38 39 40 41 42

## Model Zoo

### PP-YOLO

|          Model           | GPU number | images/GPU |  backbone  | input shape | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config  |
W
wangxinxin08 已提交
43
|:------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :------: |
W
wangxinxin08 已提交
44 45 46 47 48 49 50 51 52 53 54
| PP-YOLO                  |     8      |     24     | ResNet50vd |     608     |         44.8         |         45.2          |      72.9      |          155.6          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     512     |         43.9         |         44.4          |      89.9      |          188.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     416     |         42.1         |         42.5          |      109.1      |          215.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO                  |     8      |     24     | ResNet50vd |     320     |         38.9         |         39.3          |      132.2      |          242.2          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     608     |         45.3         |         45.9          |      72.9      |          155.6          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     512     |         44.4         |         45.0          |      89.9      |          188.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     416     |         42.7         |         43.2          |      109.1      |          215.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO_2x               |     8      |     24     | ResNet50vd |     320     |         39.5         |         40.1          |      132.2      |          242.2          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml)                   |
| PP-YOLO               |     4      |     32     | ResNet18vd |     512     |         29.2         |         29.5          |      357.1      |          657.9          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r18vd_coco.yml)                   |
| PP-YOLO               |     4      |     32     | ResNet18vd |     416     |         28.6         |         28.9          |      409.8      |          719.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r18vd_coco.yml)                   |
| PP-YOLO               |     4      |     32     | ResNet18vd |     320     |         26.2         |         26.4          |      480.7      |          763.4          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r18vd_coco.yml)                   |
55 56
| PP-YOLOv2               |     8      |     12     | ResNet50vd |     640     |         49.1         |         49.5          |      68.9      |          106.5          | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml)                   |
| PP-YOLOv2               |     8      |     12     | ResNet101vd |     640     |         49.7         |         50.3          |     49.5     |         87.0         | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolov2_r101vd_dcn_365e_coco.yml)                   |
W
wangxinxin08 已提交
57

W
wangxinxin08 已提交
58 59 60 61

**Notes:**

- PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
62
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md).
W
wangxinxin08 已提交
63 64 65
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
66
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
W
wangxinxin08 已提交
67

W
wangxinxin08 已提交
68 69 70 71
### PP-YOLO for mobile

|            Model             | GPU number | images/GPU | Model Size | input shape | Box AP<sup>val</sup> |  Box AP50<sup>val</sup> | Kirin 990 1xCore(FPS) | download | config  |
|:----------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: |  :--------------------: | :--------------------: | :------: | :------: |
W
wangxinxin08 已提交
72 73
| PP-YOLO_MobileNetV3_large    |    4    |      32       |    28MB    |   320    |         23.2         |           42.6          |           14.1         | [model](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_large_coco.yml)                   |
| PP-YOLO_MobileNetV3_small    |    4    |      32       |    16MB    |   320    |         17.2         |           33.8          |           21.5         | [model](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_small_coco.yml)                   |
W
wangxinxin08 已提交
74 75 76 77

**Notes:**

- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
78
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md).
W
wangxinxin08 已提交
79 80
- PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread.

K
Kaipeng Deng 已提交
81 82 83 84 85 86 87 88 89 90
### PP-YOLO tiny

|            Model             | GPU number | images/GPU | Model Size | Post Quant Model Size | input shape | Box AP<sup>val</sup> | Kirin 990 4xCore(FPS) | download | config | post quant model |
|:----------------------------:|:-------:|:-------------:|:----------:| :-------------------: | :---------: | :------------------: | :-------------------: | :------: | :----: | :--------------: |
| PP-YOLO tiny                 |    8    |      32       |   4.2MB    |       **1.3M**        |     320     |         20.6         |          92.3         | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_tiny_650e_coco.yml)  | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
| PP-YOLO tiny                 |    8    |      32       |   4.2MB    |       **1.3M**        |     416     |         22.7         |          65.4         | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_tiny_650e_coco.yml)  | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |

**Notes:**

- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
91
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md).
K
Kaipeng Deng 已提交
92 93 94
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance

W
wangxinxin08 已提交
95 96 97 98 99 100
### PP-YOLO on Pascal VOC

PP-YOLO trained on Pascal VOC dataset as follows:

|       Model        | GPU number | images/GPU |  backbone  | input shape | Box AP50<sup>val</sup> | download | config  |
|:------------------:|:----------:|:----------:|:----------:| :----------:| :--------------------: | :------: | :-----: |
W
wangxinxin08 已提交
101 102 103
| PP-YOLO            |    8    |       12      | ResNet50vd |     608     |          84.9          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml)                   |
| PP-YOLO            |    8    |       12      | ResNet50vd |     416     |          84.3          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml)                   |
| PP-YOLO            |    8    |       12      | ResNet50vd |     320     |          82.2          | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml)                   |
W
wangxinxin08 已提交
104

W
wangxinxin08 已提交
105 106 107 108 109 110 111 112 113 114
## Getting Start

### 1. Training

Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection dygraph directory as default)

```bash
python -m paddle.distributed.launch --log_dir=./ppyolo_dygraph/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml &>ppyolo_dygraph.log 2>&1 &
```

115 116 117 118 119 120
optional: Run `tools/anchor_cluster.py` to get anchors suitable for your dataset, and modify the anchor setting in model configuration file and reader configuration file, such as `configs/ppyolo/_base_/ppyolo_tiny.yml` and `configs/ppyolo/_base_/ppyolo_tiny_reader.yml`.

``` bash
python tools/anchor_cluster.py -c configs/ppyolo/ppyolo_tiny_650e_coco.yml -n 9 -s 320 -m v2 -i 1000
```

W
wangxinxin08 已提交
121 122 123 124 125 126
### 2. Evaluation

Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands:

```bash
# use weights released in PaddleDetection model zoo
127
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
W
wangxinxin08 已提交
128 129 130 131 132 133 134 135 136

# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=output/ppyolo_r50vd_dcn_1x_coco/model_final
```

For evaluation on COCO test-dev2017 dataset, `configs/ppyolo/ppyolo_test.yml` should be used, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to pathes configured by `EvalReader.dataset` in `configs/ppyolo/ppyolo_test.yml` and run evaluation by following command:

```bash
# use weights released in PaddleDetection model zoo
137
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
W
wangxinxin08 已提交
138 139 140 141 142 143 144

# use saved checkpoint in training
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo_r50vd_dcn_1x_coco/model_final
```

Evaluation results will be saved in `bbox.json`, compress it into a `zip` package and upload to [COCO dataset evaluation](https://competitions.codalab.org/competitions/20794#participate) to evaluate.

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
**NOTE 1:** `configs/ppyolo/ppyolo_test.yml` is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating.

**NOTE 2:** Due to the overall upgrade of the dynamic graph framework, the following weight models published by paddledetection need to be evaluated by adding the -- bias field, such as

```bash
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --bias
```
These models are:

1.ppyolo_r50vd_dcn_1x_coco

2.ppyolo_r50vd_dcn_voc

3.ppyolo_r18vd_coco

4.ppyolo_mbv3_large_coco

5.ppyolo_mbv3_small_coco

6.ppyolo_tiny_650e_coco
W
wangxinxin08 已提交
166 167 168 169 170 171 172

### 3. Inference

Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory.

```bash
# inference single image
173
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439_640x640.jpg
W
wangxinxin08 已提交
174 175

# inference all images in the directory
176
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=demo
W
wangxinxin08 已提交
177 178
```

179
### 4. Inferece deployment
W
wangxinxin08 已提交
180 181 182 183 184

For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands:

```bash
# export model, model will be save in output/ppyolo as default
185
python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams
W
wangxinxin08 已提交
186 187

# inference with Paddle Inference library
G
George Ni 已提交
188
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=demo/000000014439_640x640.jpg --device=GPU
W
wangxinxin08 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
```


## Future work

1. more PP-YOLO tiny model
2. PP-YOLO model with more backbones

## Appendix

Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3.

| NO.  |        Model                 | Box AP<sup>val</sup> | Box AP<sup>test</sup> | Params(M) | FLOPs(G) | V100 FP32 FPS |
| :--: | :--------------------------- | :------------------: |:--------------------: | :-------: | :------: | :-----------: |
|  A   | YOLOv3-DarkNet53             |         38.9         |           -           |   59.13   |  65.52   |      58.2     |
|  B   | YOLOv3-ResNet50vd-DCN        |         39.1         |           -           |   43.89   |  44.71   |      79.2     |
|  C   | B + LB + EMA + DropBlock     |         41.4         |           -           |   43.89   |  44.71   |      79.2     |
|  D   | C + IoU Loss                 |         41.9         |           -           |   43.89   |  44.71   |      79.2     |
|  E   | D + IoU Aware                |         42.5         |           -           |   43.90   |  44.71   |      74.9     |
|  F   | E + Grid Sensitive           |         42.8         |           -           |   43.90   |  44.71   |      74.8     |
|  G   | F + Matrix NMS               |         43.5         |           -           |   43.90   |  44.71   |      74.8     |
|  H   | G + CoordConv                |         44.0         |           -           |   43.93   |  44.76   |      74.1     |
|  I   | H + SPP                      |         44.3         |         45.2          |   44.93   |  45.12   |      72.9     |
|  J   | I + Better ImageNet Pretrain |         44.8         |         45.2          |   44.93   |  45.12   |      72.9     |
|  K   | J + 2x Scheduler             |         45.3         |         45.9          |   44.93   |  45.12   |      72.9     |

**Notes:**

- Performance and inference spedd are measure with input shape as 608
- All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`.
- Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above.
220
- [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) with mAP as 39.0 is optimized YOLOv3 model in PaddleDetection,see [YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/yolov3/README.md) for details.
W
wangguanzhong 已提交
221 222 223 224

## Citation

```
225 226 227 228 229 230
@article{huang2021pp,
  title={PP-YOLOv2: A Practical Object Detector},
  author={Huang, Xin and Wang, Xinxin and Lv, Wenyu and Bai, Xiaying and Long, Xiang and Deng, Kaipeng and Dang, Qingqing and Han, Shumin and Liu, Qiwen and Hu, Xiaoguang and others},
  journal={arXiv preprint arXiv:2104.10419},
  year={2021}
}
W
wangguanzhong 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
@misc{long2020ppyolo,
title={PP-YOLO: An Effective and Efficient Implementation of Object Detector},
author={Xiang Long and Kaipeng Deng and Guanzhong Wang and Yang Zhang and Qingqing Dang and Yuan Gao and Hui Shen and Jianguo Ren and Shumin Han and Errui Ding and Shilei Wen},
year={2020},
eprint={2007.12099},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
year={2019}
}
```