cascade_mask_rcnn.py 16.7 KB
Newer Older
L
LordAaron 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
from collections import OrderedDict
20
import copy
21

L
LordAaron 已提交
22 23
import paddle.fluid as fluid

24
from ppdet.experimental import mixed_precision_global_state
L
LordAaron 已提交
25 26
from ppdet.core.workspace import register

27 28
from .input_helper import multiscale_def

L
LordAaron 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
__all__ = ['CascadeMaskRCNN']


@register
class CascadeMaskRCNN(object):
    """
    Cascade Mask R-CNN architecture, see https://arxiv.org/abs/1712.00726

    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNhead` instance
        bbox_assigner (object): `BBoxAssigner` instance
        roi_extractor (object): ROI extractor instance
        bbox_head (object): `BBoxHead` instance
        mask_assigner (object): `MaskAssigner` instance
        mask_head (object): `MaskHead` instance
        fpn (object): feature pyramid network instance
    """

    __category__ = 'architecture'
    __inject__ = [
        'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
        'mask_assigner', 'mask_head', 'fpn'
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 roi_extractor='FPNRoIAlign',
                 bbox_head='CascadeBBoxHead',
                 bbox_assigner='CascadeBBoxAssigner',
                 mask_assigner='MaskAssigner',
                 mask_head='MaskHead',
W
wangguanzhong 已提交
62
                 rpn_only=False,
L
LordAaron 已提交
63 64 65 66 67 68 69 70 71 72 73
                 fpn='FPN'):
        super(CascadeMaskRCNN, self).__init__()
        assert fpn is not None, "cascade RCNN requires FPN"
        self.backbone = backbone
        self.fpn = fpn
        self.rpn_head = rpn_head
        self.bbox_assigner = bbox_assigner
        self.roi_extractor = roi_extractor
        self.bbox_head = bbox_head
        self.mask_assigner = mask_assigner
        self.mask_head = mask_head
W
wangguanzhong 已提交
74
        self.rpn_only = rpn_only
L
LordAaron 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
        # Cascade local cfg
        self.cls_agnostic_bbox_reg = 2
        (brw0, brw1, brw2) = self.bbox_assigner.bbox_reg_weights
        self.cascade_bbox_reg_weights = [
            [1. / brw0, 1. / brw0, 2. / brw0, 2. / brw0],
            [1. / brw1, 1. / brw1, 2. / brw1, 2. / brw1],
            [1. / brw2, 1. / brw2, 2. / brw2, 2. / brw2]
        ]
        self.cascade_rcnn_loss_weight = [1.0, 0.5, 0.25]

    def build(self, feed_vars, mode='train'):
        if mode == 'train':
            required_fields = [
88
                'gt_class', 'gt_bbox', 'gt_mask', 'is_crowd', 'im_info'
L
LordAaron 已提交
89 90 91
            ]
        else:
            required_fields = ['im_shape', 'im_info']
W
wangguanzhong 已提交
92
        self._input_check(required_fields, feed_vars)
L
LordAaron 已提交
93

W
wangguanzhong 已提交
94
        im = feed_vars['image']
L
LordAaron 已提交
95
        if mode == 'train':
96
            gt_bbox = feed_vars['gt_bbox']
L
LordAaron 已提交
97 98 99 100
            is_crowd = feed_vars['is_crowd']

        im_info = feed_vars['im_info']

101 102 103 104 105
        mixed_precision_enabled = mixed_precision_global_state() is not None
        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

L
LordAaron 已提交
106 107 108
        # backbone
        body_feats = self.backbone(im)

109 110 111 112 113
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
                                     for k, v in body_feats.items())

L
LordAaron 已提交
114 115 116 117 118 119 120 121
        # FPN
        if self.fpn is not None:
            body_feats, spatial_scale = self.fpn.get_output(body_feats)

        # rpn proposals
        rpn_rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)

        if mode == 'train':
122
            rpn_loss = self.rpn_head.get_loss(im_info, gt_bbox, is_crowd)
L
LordAaron 已提交
123 124 125 126
        else:
            if self.rpn_only:
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
127 128
                im_scale = fluid.layers.sequence_expand(im_scale, rpn_rois)
                rois = rpn_rois / im_scale
L
LordAaron 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                return {'proposal': rois}

        proposal_list = []
        roi_feat_list = []
        rcnn_pred_list = []
        rcnn_target_list = []

        proposals = None
        bbox_pred = None
        for i in range(3):
            if i > 0:
                refined_bbox = self._decode_box(
                    proposals,
                    bbox_pred,
                    curr_stage=i - 1, )
            else:
                refined_bbox = rpn_rois

            if mode == 'train':
                outs = self.bbox_assigner(
                    input_rois=refined_bbox, feed_vars=feed_vars, curr_stage=i)

                proposals = outs[0]
                rcnn_target_list.append(outs)
            else:
                proposals = refined_bbox
            proposal_list.append(proposals)

            # extract roi features
            roi_feat = self.roi_extractor(body_feats, proposals, spatial_scale)
            roi_feat_list.append(roi_feat)

            # bbox head
            cls_score, bbox_pred = self.bbox_head.get_output(
                roi_feat,
                wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                name='_' + str(i + 1) if i > 0 else '')
            rcnn_pred_list.append((cls_score, bbox_pred))

        # get mask rois
        rois = proposal_list[2]

        if mode == 'train':
            loss = self.bbox_head.get_loss(rcnn_pred_list, rcnn_target_list,
                                           self.cascade_rcnn_loss_weight)
            loss.update(rpn_loss)

            labels_int32 = rcnn_target_list[2][1]

            mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
                rois=rois,
180
                gt_classes=feed_vars['gt_class'],
L
LordAaron 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                is_crowd=feed_vars['is_crowd'],
                gt_segms=feed_vars['gt_mask'],
                im_info=feed_vars['im_info'],
                labels_int32=labels_int32)

            if self.fpn is None:
                bbox_head_feat = self.bbox_head.get_head_feat()
                feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
            else:
                feat = self.roi_extractor(
                    body_feats, mask_rois, spatial_scale, is_mask=True)
            mask_loss = self.mask_head.get_loss(feat, mask_int32)
            loss.update(mask_loss)

            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
W
wangguanzhong 已提交
199 200 201 202 203 204
            mask_name = 'mask_pred'
            mask_pred, bbox_pred = self.single_scale_eval(
                body_feats, spatial_scale, im_info, mask_name, bbox_pred,
                roi_feat_list, rcnn_pred_list, proposal_list,
                feed_vars['im_shape'])
            return {'bbox': bbox_pred, 'mask': mask_pred}
L
LordAaron 已提交
205

W
wangguanzhong 已提交
206 207 208 209 210 211 212 213 214 215
    def build_multi_scale(self, feed_vars, mask_branch=False):
        required_fields = ['image', 'im_info']
        self._input_check(required_fields, feed_vars)

        result = {}
        if not mask_branch:
            assert 'im_shape' in feed_vars, \
                "{} has no im_shape field".format(feed_vars)
            result.update(feed_vars)

216 217 218
        for i in range(len(self.im_info_names) // 2):
            im = feed_vars[self.im_info_names[2 * i]]
            im_info = feed_vars[self.im_info_names[2 * i + 1]]
W
wangguanzhong 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            body_feats = self.backbone(im)

            # FPN
            if self.fpn is not None:
                body_feats, spatial_scale = self.fpn.get_output(body_feats)
            rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')
            if not mask_branch:
                im_shape = feed_vars['im_shape']
                body_feat_names = list(body_feats.keys())
                proposal_list = []
                roi_feat_list = []
                rcnn_pred_list = []

                proposals = None
                bbox_pred = None
                for i in range(3):
                    if i > 0:
                        refined_bbox = self._decode_box(
                            proposals,
                            bbox_pred,
                            curr_stage=i - 1, )
                    else:
                        refined_bbox = rois

                    proposals = refined_bbox
                    proposal_list.append(proposals)

                    # extract roi features
                    roi_feat = self.roi_extractor(body_feats, proposals,
                                                  spatial_scale)
                    roi_feat_list.append(roi_feat)

                    # bbox head
                    cls_score, bbox_pred = self.bbox_head.get_output(
                        roi_feat,
                        wb_scalar=1.0 / self.cascade_rcnn_loss_weight[i],
                        name='_' + str(i + 1) if i > 0 else '')
                    rcnn_pred_list.append((cls_score, bbox_pred))

                # get mask rois
                if self.fpn is None:
                    body_feat = body_feats[body_feat_names[-1]]
                pred = self.bbox_head.get_prediction(
                    im_info,
                    im_shape,
                    roi_feat_list,
                    rcnn_pred_list,
                    proposal_list,
                    self.cascade_bbox_reg_weights,
                    return_box_score=True)
                bbox_name = 'bbox_' + str(i)
                score_name = 'score_' + str(i)
                if 'flip' in im.name:
                    bbox_name += '_flip'
                    score_name += '_flip'
                result[bbox_name] = pred['bbox']
                result[score_name] = pred['score']
            else:
                mask_name = 'mask_pred_' + str(i)
                bbox_pred = feed_vars['bbox']
                if 'flip' in im.name:
                    mask_name += '_flip'
                    bbox_pred = feed_vars['bbox_flip']
                mask_pred, bbox_pred = self.single_scale_eval(
                    body_feats,
                    spatial_scale,
                    im_info,
                    mask_name,
                    bbox_pred=bbox_pred,
                    use_multi_test=True)
                result[mask_name] = mask_pred
        return result

    def single_scale_eval(self,
                          body_feats,
                          spatial_scale,
                          im_info,
                          mask_name,
                          bbox_pred,
                          roi_feat_list=None,
                          rcnn_pred_list=None,
                          proposal_list=None,
                          im_shape=None,
                          use_multi_test=False):
        if self.fpn is None:
            last_feat = body_feats[list(body_feats.keys())[-1]]
        if not use_multi_test:
L
LordAaron 已提交
306
            bbox_pred = self.bbox_head.get_prediction(
W
wangguanzhong 已提交
307 308
                im_info, im_shape, roi_feat_list, rcnn_pred_list, proposal_list,
                self.cascade_bbox_reg_weights)
L
LordAaron 已提交
309 310
            bbox_pred = bbox_pred['bbox']

W
wangguanzhong 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        # share weight
        bbox_shape = fluid.layers.shape(bbox_pred)
        bbox_size = fluid.layers.reduce_prod(bbox_shape)
        bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
        size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
        cond = fluid.layers.less_than(x=bbox_size, y=size)

        mask_pred = fluid.layers.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=False,
            name=mask_name)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(cond):
                fluid.layers.assign(input=bbox_pred, output=mask_pred)
            with switch.default():
                bbox = fluid.layers.slice(bbox_pred, [1], starts=[2], ends=[6])
L
LordAaron 已提交
329

W
wangguanzhong 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
                im_scale = fluid.layers.slice(
                    im_info, [1], starts=[2], ends=[3])
                im_scale = fluid.layers.sequence_expand(im_scale, bbox)

                mask_rois = bbox * im_scale
                if self.fpn is None:
                    mask_feat = self.roi_extractor(last_feat, mask_rois)
                    mask_feat = self.bbox_head.get_head_feat(mask_feat)
                else:
                    mask_feat = self.roi_extractor(
                        body_feats, mask_rois, spatial_scale, is_mask=True)

                mask_out = self.mask_head.get_prediction(mask_feat, bbox)
                fluid.layers.assign(input=mask_out, output=mask_pred)
        return mask_pred, bbox_pred

    def _input_check(self, require_fields, feed_vars):
        for var in require_fields:
            assert var in feed_vars, \
                "{} has no {} field".format(feed_vars, var)
L
LordAaron 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

    def _decode_box(self, proposals, bbox_pred, curr_stage):
        rcnn_loc_delta_r = fluid.layers.reshape(
            bbox_pred, (-1, self.cls_agnostic_bbox_reg, 4))
        # only use fg box delta to decode box
        rcnn_loc_delta_s = fluid.layers.slice(
            rcnn_loc_delta_r, axes=[1], starts=[1], ends=[2])
        refined_bbox = fluid.layers.box_coder(
            prior_box=proposals,
            prior_box_var=self.cascade_bbox_reg_weights[curr_stage],
            target_box=rcnn_loc_delta_s,
            code_type='decode_center_size',
            box_normalized=False,
            axis=1, )
        refined_bbox = fluid.layers.reshape(refined_bbox, shape=[-1, 4])

        return refined_bbox

368 369 370 371 372 373
    def _inputs_def(self, image_shape):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,  'dtype': 'float32', 'lod_level': 0},
            'im_info':  {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
Q
qingqing01 已提交
374
            'im_id':    {'shape': [None, 1], 'dtype': 'int64',   'lod_level': 0},
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
            'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
            'gt_bbox':  {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
            'gt_class': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'is_crowd': {'shape': [None, 1], 'dtype': 'int32',   'lod_level': 1},
            'gt_mask':  {'shape': [None, 2], 'dtype': 'float32', 'lod_level': 3}, # polygon coordinates
            'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
        }
        # yapf: enable
        return inputs_def

    def build_inputs(self,
                     image_shape=[3, None, None],
                     fields=[
                         'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class',
                         'is_crowd', 'gt_mask'
                     ],
                     multi_scale=False,
                     num_scales=-1,
                     use_flip=None,
                     use_dataloader=True,
                     iterable=False,
                     mask_branch=False):
        inputs_def = self._inputs_def(image_shape)
        fields = copy.deepcopy(fields)
        if multi_scale:
            ms_def, ms_fields = multiscale_def(image_shape, num_scales,
                                               use_flip)
            inputs_def.update(ms_def)
            fields += ms_fields
            self.im_info_names = ['image', 'im_info'] + ms_fields
            if mask_branch:
                box_fields = ['bbox', 'bbox_flip'] if use_flip else ['bbox']
                for key in box_fields:
                    inputs_def[key] = {
                        'shape': [6],
                        'dtype': 'float32',
                        'lod_level': 1
                    }
                fields += box_fields
        feed_vars = OrderedDict([(key, fluid.layers.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        use_dataloader = use_dataloader and not mask_branch
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=64,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

L
LordAaron 已提交
427 428 429
    def train(self, feed_vars):
        return self.build(feed_vars, 'train')

W
wangguanzhong 已提交
430 431 432
    def eval(self, feed_vars, multi_scale=None, mask_branch=False):
        if multi_scale:
            return self.build_multi_scale(feed_vars, mask_branch)
L
LordAaron 已提交
433 434 435 436
        return self.build(feed_vars, 'test')

    def test(self, feed_vars):
        return self.build(feed_vars, 'test')