export_serving_model.py 3.6 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
25
from ppdet.utils.check import check_config, check_version
J
Jiawei Wang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
import ppdet.utils.checkpoint as checkpoint
import yaml
import logging
from export_model import parse_reader, dump_infer_config, prune_feed_vars
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    feed_var_names = [var.name for var in feed_vars.values()]
    fetch_list = sorted(test_fetches.items(), key=lambda i: i[0])
    target_vars = [var[1] for var in fetch_list]
    feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
    serving_client = os.path.join(FLAGS.output_dir, 'serving_client')
    serving_server = os.path.join(FLAGS.output_dir, 'serving_server')
    logger.info(
        "Export serving model to {}, client side: {}, server side: {}. input: {}, output: "
        "{}...".format(FLAGS.output_dir, serving_client, serving_server,
                       feed_var_names, [str(var.name) for var in target_vars]))
    feed_dict = {x: infer_prog.global_block().var(x) for x in feed_var_names}
    fetch_dict = {x.name: x for x in target_vars}
    import paddle_serving_client.io as serving_io
    serving_client = os.path.join(save_dir, 'serving_client')
    serving_server = os.path.join(save_dir, 'serving_server')
J
Jiawei Wang 已提交
53 54 55 56 57 58
    serving_io.save_model(
        client_config_folder=serving_client,
        server_model_folder=serving_server,
        feed_dict,
        fetch_dict,
        infer_prog)
J
Jiawei Wang 已提交
59 60 61 62 63


def main():
    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
G
Guanghua Yu 已提交
64
    check_config(cfg)
65
    check_version()
G
Guanghua Yu 已提交
66 67

    main_arch = cfg.architecture
J
Jiawei Wang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    # Use CPU for exporting inference model instead of GPU
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            inputs_def = cfg['TestReader']['inputs_def']
            inputs_def['use_dataloader'] = False
            feed_vars, _ = model.build_inputs(**inputs_def)
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    exe.run(startup_prog)
    checkpoint.load_params(exe, infer_prog, cfg.weights)

    save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
    dump_infer_config(FLAGS, cfg)


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output model files.")

    FLAGS = parser.parse_args()
    main()