pipeline.py 47.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
Z
zhiboniu 已提交
24
from collections import Sequence, defaultdict
Z
zhiboniu 已提交
25
from datacollector import DataCollector, Result
26 27 28 29 30

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

31 32
from cfg_utils import argsparser, print_arguments, merge_cfg
from pipe_utils import PipeTimer
Z
zhiboniu 已提交
33 34
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint

35
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
36 37
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
38
from python.preprocess import decode_image, ShortSizeScale
Z
zhiboniu 已提交
39
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate
40 41

from pptracking.python.mot_sde_infer import SDE_Detector
42 43
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
44

Z
zhiboniu 已提交
45 46 47 48 49 50 51
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

52 53 54
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr

55 56
from download import auto_download_model

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
81 82 83
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
84
            or getting out from the entrance, default as False, only support single class
85
            counting in MOT.
86 87
    """

Z
zhiboniu 已提交
88
    def __init__(self, args, cfg):
89
        self.multi_camera = False
Z
zhiboniu 已提交
90 91
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
92
        self.is_video = False
Z
zhiboniu 已提交
93
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
94
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
95 96 97
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
                                       args.camera_id)
98
        if self.multi_camera:
99 100 101
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
102
                    args, cfg, is_video=True, multi_camera=True)
103 104 105
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

106
        else:
Z
zhiboniu 已提交
107
            self.predictor = PipePredictor(args, cfg, self.is_video)
108
            if self.is_video:
Z
zhiboniu 已提交
109
                self.predictor.set_file_name(args.video_file)
110

Z
zhiboniu 已提交
111 112 113 114
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
115 116 117 118 119 120 121
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
122

Z
zhiboniu 已提交
123 124
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
125 126 127 128 129 130 131 132 133

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
134 135 136
            assert os.path.exists(
                video_file
            ) or 'rtsp' in video_file, "video_file not exists and not an rtsp site."
Z
zhiboniu 已提交
137 138 139 140 141 142 143
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
144
                self.multi_camera = True
Z
zhiboniu 已提交
145 146
                videof.sort()
                input = videof
147
            else:
Z
zhiboniu 已提交
148
                input = videof[0]
149 150 151
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
152 153
            self.multi_camera = False
            input = camera_id
154 155 156 157
            self.is_video = True

        else:
            raise ValueError(
158
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
159 160 161 162 163 164 165 166 167
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
168 169
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
170 171 172 173 174 175
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
176 177 178 179 180

        else:
            self.predictor.run(self.input)


181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def get_model_dir(cfg):
    # auto download inference model
    model_dir_dict = {}
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
                model_dir_dict[key] = model_dir
                print(key, " model dir:", model_dir)
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
                model_dir_dict["det_model_dir"] = det_model_dir
                print("det_model_dir model dir:", det_model_dir)

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
                model_dir_dict["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir:", rec_model_dir)
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
            model_dir_dict[key] = model_dir

    return model_dir_dict


220 221 222 223 224 225 226 227 228 229 230 231 232
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
233
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
234
        4. VideoAction Recognition
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
254 255 256
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
257
            or getting out from the entrance, default as False, only support single class
258
            counting in MOT.
259 260
    """

Z
zhiboniu 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        device = args.device
        run_mode = args.run_mode
        trt_min_shape = args.trt_min_shape
        trt_max_shape = args.trt_max_shape
        trt_opt_shape = args.trt_opt_shape
        trt_calib_mode = args.trt_calib_mode
        cpu_threads = args.cpu_threads
        enable_mkldnn = args.enable_mkldnn
        output_dir = args.output_dir
        draw_center_traj = args.draw_center_traj
        secs_interval = args.secs_interval
        do_entrance_counting = args.do_entrance_counting
274 275 276
        do_break_in_counting = args.do_break_in_counting
        region_type = args.region_type
        region_polygon = args.region_polygon
Z
zhiboniu 已提交
277 278 279 280

        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
281
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
282
            'ATTR', False) else False
Z
zhiboniu 已提交
283 284
        if self.with_mot:
            print('Multi-Object Tracking enabled')
285 286
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
287 288

        # only for pphuman
Z
zhiboniu 已提交
289 290 291
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
292 293 294 295 296 297 298 299 300
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
301 302
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
303

Z
zhiboniu 已提交
304 305
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
306 307 308 309 310 311
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
312 313
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
314

Z
zhiboniu 已提交
315 316 317 318 319 320 321
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

322 323 324 325 326 327
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

328 329 330 331 332 333
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
334

335 336 337 338 339 340 341 342 343 344 345 346
        self.basemode = {
            "MOT": "idbased",
            "ATTR": "idbased",
            "VIDEO_ACTION": "videobased",
            "SKELETON_ACTION": "skeletonbased",
            "ID_BASED_DETACTION": "idbased",
            "ID_BASED_CLSACTION": "idbased",
            "REID": "idbased",
            "VEHICLE_PLATE": "idbased",
            "VEHICLE_ATTR": "idbased",
        }

347 348 349 350
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
351 352 353
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
354 355 356
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
357

J
JYChen 已提交
358
        self.warmup_frame = self.cfg['warmup_frame']
359 360
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
361
        self.file_name = None
Z
zhiboniu 已提交
362
        self.collector = DataCollector()
363

364 365 366
        # auto download inference model
        model_dir_dict = get_model_dir(self.cfg)

Z
zhiboniu 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        if self.with_vehicleplate:
            vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
            self.vehicleplate_detector = PlateRecognizer(args, vehicleplate_cfg)
            basemode = self.basemode['VEHICLE_PLATE']
            self.modebase[basemode] = True

        if self.with_human_attr:
            attr_cfg = self.cfg['ATTR']
            model_dir = model_dir_dict['ATTR']
            batch_size = attr_cfg['batch_size']
            basemode = self.basemode['ATTR']
            self.modebase[basemode] = True
            self.attr_predictor = AttrDetector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)

        if self.with_vehicle_attr:
            vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
            model_dir = model_dir_dict['VEHICLE_ATTR']
            batch_size = vehicleattr_cfg['batch_size']
            color_threshold = vehicleattr_cfg['color_threshold']
            type_threshold = vehicleattr_cfg['type_threshold']
            basemode = self.basemode['VEHICLE_ATTR']
            self.modebase[basemode] = True
            self.vehicle_attr_predictor = VehicleAttr(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn, color_threshold, type_threshold)

397 398
        if not is_video:
            det_cfg = self.cfg['DET']
399
            model_dir = model_dir_dict['DET']
400 401 402 403 404
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
405

406
        else:
Z
zhiboniu 已提交
407
            if self.with_idbased_detaction:
J
JYChen 已提交
408
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
409
                model_dir = model_dir_dict['ID_BASED_DETACTION']
J
JYChen 已提交
410
                batch_size = idbased_detaction_cfg['batch_size']
411
                basemode = self.basemode['ID_BASED_DETACTION']
J
JYChen 已提交
412 413
                threshold = idbased_detaction_cfg['threshold']
                display_frames = idbased_detaction_cfg['display_frames']
414
                skip_frame_num = idbased_detaction_cfg['skip_frame_num']
J
JYChen 已提交
415
                self.modebase[basemode] = True
416

J
JYChen 已提交
417 418 419 420 421 422 423 424 425 426 427 428
                self.det_action_predictor = DetActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
429 430
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
431 432
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
433
            if self.with_idbased_clsaction:
J
JYChen 已提交
434
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
435
                model_dir = model_dir_dict['ID_BASED_CLSACTION']
J
JYChen 已提交
436
                batch_size = idbased_clsaction_cfg['batch_size']
437
                basemode = self.basemode['ID_BASED_CLSACTION']
J
JYChen 已提交
438 439 440
                threshold = idbased_clsaction_cfg['threshold']
                self.modebase[basemode] = True
                display_frames = idbased_clsaction_cfg['display_frames']
441 442
                skip_frame_num = idbased_clsaction_cfg['skip_frame_num']

J
JYChen 已提交
443 444 445 446 447 448 449 450 451 452 453 454
                self.cls_action_predictor = ClsActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
455 456
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
457 458
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
459 460
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
461
                skeleton_action_model_dir = model_dir_dict['SKELETON_ACTION']
Z
zhiboniu 已提交
462 463 464 465
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
466
                basemode = self.basemode['SKELETON_ACTION']
467 468
                self.modebase[basemode] = True

Z
zhiboniu 已提交
469 470
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
471 472
                    device,
                    run_mode,
Z
zhiboniu 已提交
473
                    skeleton_action_batch_size,
J
JYChen 已提交
474 475 476 477 478 479
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
480
                    window_size=skeleton_action_frames)
J
JYChen 已提交
481
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
482
                    display_frames)
483 484 485

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
486
                    kpt_model_dir = model_dir_dict['KPT']
487 488 489 490 491 492 493 494 495 496 497 498 499
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
500
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
501

Z
zhiboniu 已提交
502 503
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
504
                model_dir = model_dir_dict['REID']
Z
zhiboniu 已提交
505
                batch_size = reid_cfg['batch_size']
506
                basemode = self.basemode['REID']
Z
zhiboniu 已提交
507 508 509 510 511 512
                self.modebase[basemode] = True
                self.reid_predictor = ReID(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

Z
zhiboniu 已提交
513 514 515
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
516
                model_dir = model_dir_dict['MOT']
Z
zhiboniu 已提交
517 518
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
519
                basemode = self.basemode['MOT']
Z
zhiboniu 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    draw_center_traj=draw_center_traj,
                    secs_interval=secs_interval,
535 536 537 538
                    do_entrance_counting=do_entrance_counting,
                    do_break_in_counting=do_break_in_counting,
                    region_type=region_type,
                    region_polygon=region_polygon)
Z
zhiboniu 已提交
539

540 541 542
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']

543
                basemode = self.basemode['VIDEO_ACTION']
544 545
                self.modebase[basemode] = True

546
                video_action_model_dir = model_dir_dict['VIDEO_ACTION']
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
                video_action_batch_size = video_action_cfg['batch_size']
                short_size = video_action_cfg["short_size"]
                target_size = video_action_cfg["target_size"]

                self.video_action_predictor = VideoActionRecognizer(
                    model_dir=video_action_model_dir,
                    short_size=short_size,
                    target_size=target_size,
                    device=device,
                    run_mode=run_mode,
                    batch_size=video_action_batch_size,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    trt_calib_mode=trt_calib_mode,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn)

565
    def set_file_name(self, path):
W
wangguanzhong 已提交
566 567 568 569 570
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
571

572
    def get_result(self):
Z
zhiboniu 已提交
573
        return self.collector.get_res()
574 575 576 577 578 579

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
580
        self.pipe_timer.info()
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
599 600
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
601 602 603 604
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

605
            if self.with_human_attr:
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654
            if self.with_vehicleplate:
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].start()
                crop_inputs = crop_image_with_det(batch_input, det_res)
                platelicenses = []
                for crop_input in crop_inputs:
                    platelicense = self.vehicleplate_detector.get_platelicense(
                        crop_input)
                    platelicenses.extend(platelicense['plate'])
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].end()
                vehicleplate_res = {'vehicleplate': platelicenses}
                self.pipeline_res.update(vehicleplate_res, 'vehicleplate')

655 656 657 658 659 660 661
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
662
    def predict_video(self, video_file):
663 664 665
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
666
        capture = cv2.VideoCapture(video_file)
667
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
Z
zhiboniu 已提交
668 669
        if "rtsp" in video_file:
            video_out_name = video_out_name + "_rtsp.mp4"
670 671 672 673 674 675

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
676
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
677 678 679 680 681 682 683

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
684 685 686 687 688 689 690 691 692 693

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        if self.do_entrance_counting or self.do_break_in_counting:
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

712 713
        video_fps = fps

714 715
        video_action_imgs = []

716 717 718 719
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

720 721 722
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
723

724 725 726
            ret, frame = capture.read()
            if not ret:
                break
727
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
728

729
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
730
                if frame_id > self.warmup_frame:
731 732 733
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
734
                    [copy.deepcopy(frame_rgb)], visual=False)
735

J
JYChen 已提交
736
                if frame_id > self.warmup_frame:
737 738 739 740 741 742 743 744 745 746 747
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
748 749 750
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records)
751 752 753 754 755
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
756
                    if frame_id > self.warmup_frame:
757 758 759 760 761 762 763 764 765
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
766
                            cv2.imshow('Paddle-Pipeline', im)
767 768 769 770 771
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
772
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
773
                    frame_rgb, mot_res)
774

775
                if self.with_vehicleplate and frame_id % 10 == 0:
Z
zhiboniu 已提交
776 777
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
778 779
                    plate_input, _, _ = crop_image_with_mot(
                        frame_rgb, mot_res, expand=False)
Z
zhiboniu 已提交
780
                    platelicense = self.vehicleplate_detector.get_platelicense(
Z
zhiboniu 已提交
781
                        plate_input)
Z
zhiboniu 已提交
782 783
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
784
                    self.pipeline_res.update(platelicense, 'vehicleplate')
785 786
                else:
                    self.pipeline_res.clear('vehicleplate')
Z
zhiboniu 已提交
787

788
                if self.with_human_attr:
J
JYChen 已提交
789
                    if frame_id > self.warmup_frame:
790 791 792 793 794 795 796
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

797 798 799 800 801 802 803 804 805
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
806
                if self.with_idbased_detaction:
J
JYChen 已提交
807 808 809 810 811 812 813 814 815 816
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
817 818

                if self.with_idbased_clsaction:
J
JYChen 已提交
819 820 821 822 823 824 825 826 827 828
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
829

Z
zhiboniu 已提交
830
                if self.with_skeleton_action:
Z
zhiboniu 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
844

Z
zhiboniu 已提交
845
                    self.pipeline_res.update(kpt_res, 'kpt')
846

Z
zhiboniu 已提交
847
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
848 849 850
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
851
                    skeleton_action_res = {}
852 853
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
854 855
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
856 857
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
858 859 860 861
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
862
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
863 864 865
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
866 867

                    if self.cfg['visual']:
Z
zhiboniu 已提交
868 869
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
870 871 872

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
873
                        frame_rgb, mot_res)
874 875 876 877 878 879
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
880

881 882 883 884 885 886 887 888
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
889

Z
zhiboniu 已提交
890
            if self.with_video_action:
891 892 893 894 895 896 897 898 899 900 901 902 903
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
904
                    # Scale image
905
                    scaled_img = scale(frame_rgb)
906
                    video_action_imgs.append(scaled_img)
907 908 909 910 911 912 913 914 915 916 917 918 919 920

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
921 922

            self.collector.append(frame_id, self.pipeline_res)
923 924 925 926 927 928 929

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
930
                _, _, fps = self.pipe_timer.get_total_time()
931 932 933
                im = self.visualize_video(
                    frame, self.pipeline_res, self.collector, frame_id, fps,
                    entrance, records, center_traj)  # visualize
934
                writer.write(im)
W
wangguanzhong 已提交
935
                if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
936
                    cv2.imshow('Paddle-Pipeline', im)
W
wangguanzhong 已提交
937 938
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
939 940 941 942

        writer.release()
        print('save result to {}'.format(out_path))

943 944 945
    def visualize_video(self,
                        image,
                        result,
946
                        collector,
947 948 949 950 951
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
952
        mot_res = copy.deepcopy(result.get('mot'))
953 954
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
955
            scores = mot_res['boxes'][:, 2]
956 957 958 959 960 961
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
962
            scores = np.zeros([0])
963 964 965 966 967 968 969 970 971 972

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
973 974 975 976 977 978 979 980 981
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
982
                ids2names=self.mot_predictor.pred_config.labels,
F
Feng Ni 已提交
983
                do_entrance_counting=self.do_entrance_counting,
984
                do_break_in_counting=self.do_break_in_counting,
F
Feng Ni 已提交
985 986 987
                entrance=entrance,
                records=records,
                center_traj=center_traj)
988

989 990 991 992 993 994 995 996 997
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
998
            boxes = mot_res['boxes'][:, 1:]
999 1000
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
1001 1002
            image = np.array(image)

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        if mot_res is not None:
            vehicleplate = False
            plates = []
            for trackid in mot_res['boxes'][:, 0]:
                plate = collector.get_carlp(trackid)
                if plate != None:
                    vehicleplate = True
                    plates.append(plate)
                else:
                    plates.append("")
            if vehicleplate:
                boxes = mot_res['boxes'][:, 1:]
                image = visualize_vehicleplate(image, plates, boxes)
                image = np.array(image)
Z
zhiboniu 已提交
1017

J
JYChen 已提交
1018 1019 1020 1021 1022 1023 1024 1025
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1026
        video_action_res = result.get('video_action')
J
JYChen 已提交
1027
        if video_action_res is not None:
1028 1029 1030
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1031 1032 1033
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1034 1035
            image = visualize_action(
                image,
1036
                mot_boxes,
J
JYChen 已提交
1037
                action_visual_collector=None,
1038 1039 1040
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1041

J
JYChen 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1065 1066 1067 1068 1069
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1070 1071
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')
Z
zhiboniu 已提交
1072
        vehicleplate_res = result.get('vehicleplate')
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
Z
zhiboniu 已提交
1083
                    labels=['target'],
1084
                    threshold=self.cfg['crop_thresh'])
1085 1086
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1087 1088 1089 1090 1091 1092 1093 1094
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])
Z
zhiboniu 已提交
1095 1096 1097 1098 1099
            if vehicleplate_res is not None:
                plates = vehicleplate_res['vehicleplate']
                det_res_i['boxes'][:, 4:6] = det_res_i[
                    'boxes'][:, 4:6] - det_res_i['boxes'][:, 2:4]
                im = visualize_vehicleplate(im, plates, det_res_i['boxes'])
1100

1101 1102 1103 1104
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1105
            cv2.imwrite(out_path, im)
1106 1107 1108 1109 1110
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
1111
    cfg = merge_cfg(FLAGS)  # use command params to update config
1112
    print_arguments(cfg)
1113

Z
zhiboniu 已提交
1114
    pipeline = Pipeline(FLAGS, cfg)
1115 1116 1117 1118 1119
    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
1120 1121

    # parse params from command
1122 1123 1124 1125 1126 1127 1128
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()