checkpoint.py 9.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import errno
import os
import time
import numpy as np
import paddle
W
wangxinxin08 已提交
25
import paddle.nn as nn
Q
qingqing01 已提交
26 27 28 29 30 31 32 33 34 35 36 37
from .download import get_weights_path

from .logger import setup_logger
logger = setup_logger(__name__)


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
K
Kaipeng Deng 已提交
38 39 40
    return path.startswith('http://') \
            or path.startswith('https://') \
            or path.startswith('ppdet://')
Q
qingqing01 已提交
41 42


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _get_unique_endpoints(trainer_endpoints):
    # Sorting is to avoid different environmental variables for each card
    trainer_endpoints.sort()
    ips = set()
    unique_endpoints = set()
    for endpoint in trainer_endpoints:
        ip = endpoint.split(":")[0]
        if ip in ips:
            continue
        ips.add(ip)
        unique_endpoints.add(endpoint)
    logger.info("unique_endpoints {}".format(unique_endpoints))
    return unique_endpoints


K
Kaipeng Deng 已提交
58
def get_weights_path_dist(path):
Q
qingqing01 已提交
59 60 61 62 63 64 65 66 67 68 69
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
70 71 72
                from paddle.distributed import ParallelEnv
                unique_endpoints = _get_unique_endpoints(ParallelEnv()
                                                         .trainer_endpoints[:])
Q
qingqing01 已提交
73 74 75 76 77 78 79
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
80
                if ParallelEnv().current_endpoint in unique_endpoints:
Q
qingqing01 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)

    return path


def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


def load_weight(model, weight, optimizer=None):
    if is_url(weight):
K
Kaipeng Deng 已提交
102
        weight = get_weights_path_dist(weight)
Q
qingqing01 已提交
103 104 105 106 107 108 109 110

    path = _strip_postfix(weight)
    pdparam_path = path + '.pdparams'
    if not os.path.exists(pdparam_path):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(pdparam_path))

    param_state_dict = paddle.load(pdparam_path)
111 112 113 114 115 116 117 118 119 120 121 122 123 124
    model_dict = model.state_dict()
    model_weight = {}
    incorrect_keys = 0

    for key in model_dict.keys():
        if key in param_state_dict.keys():
            model_weight[key] = param_state_dict[key]
        else:
            logger.info('Unmatched key: {}'.format(key))
            incorrect_keys += 1

    assert incorrect_keys == 0, "Load weight {} incorrectly, \
            {} keys unmatched, please check again.".format(weight,
                                                           incorrect_keys)
K
Kaipeng Deng 已提交
125
    logger.info('Finish resuming model weights: {}'.format(pdparam_path))
126 127

    model.set_dict(model_weight)
Q
qingqing01 已提交
128

G
Guanghua Yu 已提交
129
    last_epoch = 0
Q
qingqing01 已提交
130 131
    if optimizer is not None and os.path.exists(path + '.pdopt'):
        optim_state_dict = paddle.load(path + '.pdopt')
132
        # to solve resume bug, will it be fixed in paddle 2.0
Q
qingqing01 已提交
133 134 135 136 137 138
        for key in optimizer.state_dict().keys():
            if not key in optim_state_dict.keys():
                optim_state_dict[key] = optimizer.state_dict()[key]
        if 'last_epoch' in optim_state_dict:
            last_epoch = optim_state_dict.pop('last_epoch')
        optimizer.set_state_dict(optim_state_dict)
G
Guanghua Yu 已提交
139 140

    return last_epoch
Q
qingqing01 已提交
141 142


W
wangguanzhong 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
def match_state_dict(model_state_dict, weight_state_dict):
    """
    Match between the model state dict and pretrained weight state dict.
    Return the matched state dict.

    The method supposes that all the names in pretrained weight state dict are
    subclass of the names in models`, if the prefix 'backbone.' in pretrained weight
    keys is stripped. And we could get the candidates for each model key. Then we 
    select the name with the longest matched size as the final match result. For
    example, the model state dict has the name of 
    'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as
    name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We
    match the 'res2.res2a.branch2a.conv.weight' to the model key.
    """

    model_keys = sorted(model_state_dict.keys())
    weight_keys = sorted(weight_state_dict.keys())

    def match(a, b):
        if a.startswith('backbone.res5'):
            # In Faster RCNN, res5 pretrained weights have prefix of backbone, 
            # however, the corresponding model weights have difficult prefix,
            # bbox_head.
W
wangguanzhong 已提交
166
            b = b[9:]
W
wangguanzhong 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        return a == b or a.endswith("." + b)

    match_matrix = np.zeros([len(model_keys), len(weight_keys)])
    for i, m_k in enumerate(model_keys):
        for j, w_k in enumerate(weight_keys):
            if match(m_k, w_k):
                match_matrix[i, j] = len(w_k)
    max_id = match_matrix.argmax(1)
    max_len = match_matrix.max(1)
    max_id[max_len == 0] = -1
    matched_keys = {}
    result_state_dict = {}
    for model_id, weight_id in enumerate(max_id):
        if weight_id == -1:
            continue
        model_key = model_keys[model_id]
        weight_key = weight_keys[weight_id]
        weight_value = weight_state_dict[weight_key]
        model_value_shape = list(model_state_dict[model_key].shape)

        if list(weight_value.shape) != model_value_shape:
            logger.info(
                'The shape {} in pretrained weight {} is unmatched with '
                'the shape {} in model {}. And the weight {} will not be '
                'loaded'.format(weight_value.shape, weight_key,
                                model_value_shape, model_key, weight_key))
            continue

        assert model_key not in result_state_dict
        result_state_dict[model_key] = weight_value
        if weight_key in matched_keys:
            raise ValueError('Ambiguity weight {} loaded, it matches at least '
                             '{} and {} in the model'.format(
                                 weight_key, model_key, matched_keys[
                                     weight_key]))
        matched_keys[weight_key] = model_key
    return result_state_dict


K
Kaipeng Deng 已提交
206
def load_pretrain_weight(model, pretrain_weight):
Q
qingqing01 已提交
207
    if is_url(pretrain_weight):
K
Kaipeng Deng 已提交
208
        pretrain_weight = get_weights_path_dist(pretrain_weight)
Q
qingqing01 已提交
209 210 211 212

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
213 214 215 216
        raise ValueError("Model pretrain path `{}` does not exists. "
                         "If you don't want to load pretrain model, "
                         "please delete `pretrain_weights` field in "
                         "config file.".format(path))
Q
qingqing01 已提交
217 218 219

    model_dict = model.state_dict()

K
Kaipeng Deng 已提交
220 221
    weights_path = path + '.pdparams'
    param_state_dict = paddle.load(weights_path)
W
wangguanzhong 已提交
222
    param_state_dict = match_state_dict(model_dict, param_state_dict)
K
Kaipeng Deng 已提交
223 224 225

    model.set_dict(param_state_dict)
    logger.info('Finish loading model weights: {}'.format(weights_path))
Q
qingqing01 已提交
226 227 228 229 230


def save_model(model, optimizer, save_dir, save_name, last_epoch):
    """
    save model into disk.
231

Q
qingqing01 已提交
232 233 234 235 236 237 238 239
    Args:
        model (paddle.nn.Layer): the Layer instalce to save parameters.
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
    """
240 241
    if paddle.distributed.get_rank() != 0:
        return
Q
qingqing01 已提交
242 243 244
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    save_path = os.path.join(save_dir, save_name)
W
wangxinxin08 已提交
245 246 247 248 249 250
    if isinstance(model, nn.Layer):
        paddle.save(model.state_dict(), save_path + ".pdparams")
    else:
        assert isinstance(model,
                          dict), 'model is not a instance of nn.layer or dict'
        paddle.save(model, save_path + ".pdparams")
Q
qingqing01 已提交
251 252 253
    state_dict = optimizer.state_dict()
    state_dict['last_epoch'] = last_epoch
    paddle.save(state_dict, save_path + ".pdopt")
254
    logger.info("Save checkpoint: {}".format(save_dir))