adamw.py 10.2 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle.optimizer import AdamW
from functools import partial


def layerwise_lr_decay(decay_rate, name_dict, n_layers, param):
    """
    Args:
        decay_rate (float): 
            The layer-wise decay ratio.
        name_dict (dict): 
            The keys of name_dict is dynamic name of model while the value
            of name_dict is static name.
            Use model.named_parameters() to get name_dict.
        n_layers (int):
            Total number of layers in the transformer encoder.
    """
    ratio = 1.0
    static_name = name_dict[param.name]
    if "blocks" in static_name:
        idx = static_name.find("blocks.")
        layer = int(static_name[idx:].split(".")[1])
        ratio = decay_rate**(n_layers - layer)

    elif "cls_token" in static_name or 'patch_embed' in static_name:
        ratio = decay_rate**(n_layers + 1)

    param.optimize_attr["learning_rate"] *= ratio


class AdamWDL(AdamW):
    r"""
    The AdamWDL optimizer is implemented based on the AdamW Optimization with dynamic lr setting.
    Generally it's used for transformer model.

    We use "layerwise_lr_decay" as default dynamic lr setting method of AdamWDL.
    “Layer-wise decay” means exponentially decaying the learning rates of individual 
    layers in a top-down manner. For example, suppose the 24-th layer uses a learning
    rate l, and the Layer-wise decay rate is α, then the learning rate of layer m 
    is lα^(24-m). See more details on: https://arxiv.org/abs/1906.08237.

    .. math::
        & t = t + 1
    
        & moment\_1\_out = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad

        & moment\_2\_out = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad

        & learning\_rate = learning\_rate * \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}

        & param\_out = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)

    Args:
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 1e-08.
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
        apply_decay_param_fun (function|None, optional): If it is not None,
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
            will be updated. It only works when we want to specify tensors.
            Default: None.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.  
        layerwise_decay (float, optional): The layer-wise decay ratio. Defaults to 1.0.
        n_layers (int, optional): The total number of encoder layers. Defaults to 12.
        set_param_lr_fun (function|None, optional): If it's not None, set_param_lr_fun() will set the the parameter 
            learning rate before it executes Adam Operator. Defaults to :ref:`layerwise_lr_decay`.
        name_dict (dict, optional): The keys of name_dict is dynamic name of model while the value
            of name_dict is static name. Use model.named_parameters() to get name_dict.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Examples:
        .. code-block:: python

            import paddle
            from paddlenlp.ops.optimizer import AdamWDL
            def simple_lr_setting(decay_rate, name_dict, n_layers, param):
                ratio = 1.0
                static_name = name_dict[param.name]
                if "weight" in static_name:
                    ratio = decay_rate**0.5
                param.optimize_attr["learning_rate"] *= ratio
            
            linear = paddle.nn.Linear(10, 10)

            name_dict = dict()
            for n, p in linear.named_parameters():
                name_dict[p.name] = n

            inp = paddle.rand([10,10], dtype="float32")
            out = linear(inp)
            loss = paddle.mean(out)

            adamwdl = AdamWDL(
                learning_rate=1e-4,
                parameters=linear.parameters(),
                set_param_lr_fun=simple_lr_setting,
                layerwise_decay=0.8,
                name_dict=name_dict)
            
            loss.backward()
            adamwdl.step()
            adamwdl.clear_grad()
    """

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 parameters=None,
                 weight_decay=0.01,
                 apply_decay_param_fun=None,
                 grad_clip=None,
                 lazy_mode=False,
                 multi_precision=False,
                 layerwise_decay=1.0,
                 n_layers=12,
                 set_param_lr_fun=None,
                 name_dict=None,
                 name=None):
        if not isinstance(layerwise_decay, float):
            raise TypeError("coeff should be float or Tensor.")
        self.layerwise_decay = layerwise_decay
        self.n_layers = n_layers
        self.set_param_lr_fun = partial(
            set_param_lr_fun, layerwise_decay, name_dict,
            n_layers) if set_param_lr_fun is not None else set_param_lr_fun
        super(AdamWDL, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            grad_clip=grad_clip,
            name=name,
            apply_decay_param_fun=apply_decay_param_fun,
            weight_decay=weight_decay,
            lazy_mode=lazy_mode,
            multi_precision=multi_precision)

    def _append_optimize_op(self, block, param_and_grad):
        if self.set_param_lr_fun is None:
            return super(AdamWDL, self)._append_optimize_op(block,
                                                            param_and_grad)

        self._append_decoupled_weight_decay(block, param_and_grad)
        prev_lr = param_and_grad[0].optimize_attr["learning_rate"]
        self.set_param_lr_fun(param_and_grad[0])
        # excute Adam op
        res = super(AdamW, self)._append_optimize_op(block, param_and_grad)
        param_and_grad[0].optimize_attr["learning_rate"] = prev_lr
        return res


def build_adamw(model,
                lr=1e-4,
                weight_decay=0.05,
                betas=(0.9, 0.999),
                layer_decay=0.65,
                num_layers=None,
                filter_bias_and_bn=True,
                skip_decay_names=None,
                set_param_lr_fun=None):

    if skip_decay_names and filter_bias_and_bn:
        decay_dict = {
            param.name: not (len(param.shape) == 1 or name.endswith(".bias") or
                             any([_n in name for _n in skip_decay_names]))
            for name, param in model.named_parameters()
        }

        parameters = [p for p in model.parameters()]

    else:
        parameters = model.parameters()

    opt_args = dict(
        parameters=parameters, learning_rate=lr, weight_decay=weight_decay)

    if decay_dict is not None:
        opt_args['apply_decay_param_fun'] = lambda n: decay_dict[n]

    if isinstance(set_param_lr_fun, str):
        set_param_lr_fun = eval(set_param_lr_fun)
        opt_args['set_param_lr_fun'] = set_param_lr_fun

    opt_args['beta1'] = betas[0]
    opt_args['beta2'] = betas[1]

    opt_args['layerwise_decay'] = layer_decay
    name_dict = dict()
    for n, p in model.named_parameters():
        name_dict[p.name] = n

    opt_args['name_dict'] = name_dict
    opt_args['n_layers'] = num_layers

    optimizer = AdamWDL(**opt_args)

    return optimizer