transformer_utils.py 2.2 KB
Newer Older
W
Wenyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from paddle.nn.initializer import TruncatedNormal, Constant, Assign

# Common initializations
ones_ = Constant(value=1.)
zeros_ = Constant(value=0.)
trunc_normal_ = TruncatedNormal(std=.02)


# Common Layers
def drop_path(x, drop_prob=0., training=False):
    """
        Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
        the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
        See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor
    return output


class DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Identity(nn.Layer):
    def __init__(self):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


# common funcs


def to_2tuple(x):
    if isinstance(x, (list, tuple)):
        return x
    return tuple([x] * 2)


def add_parameter(layer, datas, name=None):
    parameter = layer.create_parameter(
        shape=(datas.shape), default_initializer=Assign(datas))
    if name:
        layer.add_parameter(name, parameter)
    return parameter