batch_operators.py 35.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

import cv2
import numpy as np
W
wangxinxin08 已提交
26
from .operators import register_op, BaseOperator, Resize
Q
qingqing01 已提交
27
from .op_helper import jaccard_overlap, gaussian2D
W
wangxinxin08 已提交
28
from scipy import ndimage
Q
qingqing01 已提交
29

C
cnn 已提交
30
from ppdet.modeling import bbox_utils
Q
qingqing01 已提交
31 32 33 34
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = [
C
cnn 已提交
35
    'PadBatch', 'BatchRandomResize', 'Gt2YoloTarget', 'Gt2FCOSTarget',
S
shangliang Xu 已提交
36
    'Gt2TTFTarget', 'Gt2Solov2Target', 'Gt2SparseRCNNTarget', 'PadMaskBatch'
Q
qingqing01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49
]


@register_op
class PadBatch(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
    """

50
    def __init__(self, pad_to_stride=0):
Q
qingqing01 已提交
51 52 53
        super(PadBatch, self).__init__()
        self.pad_to_stride = pad_to_stride

W
wangxinxin08 已提交
54
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
55 56 57 58 59 60
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

61
        max_shape = np.array([data['image'].shape for data in samples]).max(
Q
qingqing01 已提交
62 63 64 65 66 67 68
            axis=0)
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

69
        for data in samples:
Q
qingqing01 已提交
70 71 72 73 74 75
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
W
wangxinxin08 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm

C
cnn 已提交
90 91 92 93 94 95
            if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
                # ploy to rbox
                polys = data['gt_rbox2poly']
                rbox = bbox_utils.poly2rbox(polys)
                data['gt_rbox'] = rbox

Q
qingqing01 已提交
96 97 98 99
        return samples


@register_op
W
wangxinxin08 已提交
100
class BatchRandomResize(BaseOperator):
Q
qingqing01 已提交
101
    """
W
wangxinxin08 已提交
102
    Resize image to target size randomly. random target_size and interpolation method
Q
qingqing01 已提交
103
    Args:
W
wangxinxin08 已提交
104 105 106 107 108
        target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
        keep_ratio (bool): whether keep_raio or not, default true
        interp (int): the interpolation method
        random_size (bool): whether random select target size of image
        random_interp (bool): whether random select interpolation method
Q
qingqing01 已提交
109 110
    """

W
wangxinxin08 已提交
111 112 113 114 115 116 117 118
    def __init__(self,
                 target_size,
                 keep_ratio,
                 interp=cv2.INTER_NEAREST,
                 random_size=True,
                 random_interp=False):
        super(BatchRandomResize, self).__init__()
        self.keep_ratio = keep_ratio
Q
qingqing01 已提交
119 120 121 122 123 124
        self.interps = [
            cv2.INTER_NEAREST,
            cv2.INTER_LINEAR,
            cv2.INTER_AREA,
            cv2.INTER_CUBIC,
            cv2.INTER_LANCZOS4,
W
wangxinxin08 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138
        ]
        self.interp = interp
        assert isinstance(target_size, (
            int, Sequence)), "target_size must be int, list or tuple"
        if random_size and not isinstance(target_size, list):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. Must be List, now is {}".
                format(type(target_size)))
        self.target_size = target_size
        self.random_size = random_size
        self.random_interp = random_interp

    def __call__(self, samples, context=None):
        if self.random_size:
139 140
            index = np.random.choice(len(self.target_size))
            target_size = self.target_size[index]
W
wangxinxin08 已提交
141 142 143 144 145 146 147 148 149 150
        else:
            target_size = self.target_size

        if self.random_interp:
            interp = np.random.choice(self.interps)
        else:
            interp = self.interp

        resizer = Resize(target_size, keep_ratio=self.keep_ratio, interp=interp)
        return resizer(samples, context=context)
Q
qingqing01 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172


@register_op
class Gt2YoloTarget(BaseOperator):
    """
    Generate YOLOv3 targets by groud truth data, this operator is only used in
    fine grained YOLOv3 loss mode
    """

    def __init__(self,
                 anchors,
                 anchor_masks,
                 downsample_ratios,
                 num_classes=80,
                 iou_thresh=1.):
        super(Gt2YoloTarget, self).__init__()
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        self.downsample_ratios = downsample_ratios
        self.num_classes = num_classes
        self.iou_thresh = iou_thresh

W
wangxinxin08 已提交
173
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
174 175 176 177 178 179 180 181 182 183
        assert len(self.anchor_masks) == len(self.downsample_ratios), \
            "anchor_masks', and 'downsample_ratios' should have same length."

        h, w = samples[0]['image'].shape[1:3]
        an_hw = np.array(self.anchors) / np.array([[w, h]])
        for sample in samples:
            # im, gt_bbox, gt_class, gt_score = sample
            im = sample['image']
            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']
W
wangxinxin08 已提交
184 185 186
            if 'gt_score' not in sample:
                sample['gt_score'] = np.ones(
                    (gt_bbox.shape[0], 1), dtype=np.float32)
Q
qingqing01 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            gt_score = sample['gt_score']
            for i, (
                    mask, downsample_ratio
            ) in enumerate(zip(self.anchor_masks, self.downsample_ratios)):
                grid_h = int(h / downsample_ratio)
                grid_w = int(w / downsample_ratio)
                target = np.zeros(
                    (len(mask), 6 + self.num_classes, grid_h, grid_w),
                    dtype=np.float32)
                for b in range(gt_bbox.shape[0]):
                    gx, gy, gw, gh = gt_bbox[b, :]
                    cls = gt_class[b]
                    score = gt_score[b]
                    if gw <= 0. or gh <= 0. or score <= 0.:
                        continue

                    # find best match anchor index
                    best_iou = 0.
                    best_idx = -1
                    for an_idx in range(an_hw.shape[0]):
                        iou = jaccard_overlap(
                            [0., 0., gw, gh],
                            [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]])
                        if iou > best_iou:
                            best_iou = iou
                            best_idx = an_idx

                    gi = int(gx * grid_w)
                    gj = int(gy * grid_h)

                    # gtbox should be regresed in this layes if best match 
                    # anchor index in anchor mask of this layer
                    if best_idx in mask:
                        best_n = mask.index(best_idx)

                        # x, y, w, h, scale
                        target[best_n, 0, gj, gi] = gx * grid_w - gi
                        target[best_n, 1, gj, gi] = gy * grid_h - gj
                        target[best_n, 2, gj, gi] = np.log(
                            gw * w / self.anchors[best_idx][0])
                        target[best_n, 3, gj, gi] = np.log(
                            gh * h / self.anchors[best_idx][1])
                        target[best_n, 4, gj, gi] = 2.0 - gw * gh

                        # objectness record gt_score
                        target[best_n, 5, gj, gi] = score

                        # classification
                        target[best_n, 6 + cls, gj, gi] = 1.

                    # For non-matched anchors, calculate the target if the iou 
                    # between anchor and gt is larger than iou_thresh
                    if self.iou_thresh < 1:
                        for idx, mask_i in enumerate(mask):
                            if mask_i == best_idx: continue
                            iou = jaccard_overlap(
                                [0., 0., gw, gh],
                                [0., 0., an_hw[mask_i, 0], an_hw[mask_i, 1]])
W
wangxinxin08 已提交
245 246
                            if iou > self.iou_thresh and target[idx, 5, gj,
                                                                gi] == 0.:
Q
qingqing01 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                                # x, y, w, h, scale
                                target[idx, 0, gj, gi] = gx * grid_w - gi
                                target[idx, 1, gj, gi] = gy * grid_h - gj
                                target[idx, 2, gj, gi] = np.log(
                                    gw * w / self.anchors[mask_i][0])
                                target[idx, 3, gj, gi] = np.log(
                                    gh * h / self.anchors[mask_i][1])
                                target[idx, 4, gj, gi] = 2.0 - gw * gh

                                # objectness record gt_score
                                target[idx, 5, gj, gi] = score

                                # classification
                                target[idx, 6 + cls, gj, gi] = 1.
                sample['target{}'.format(i)] = target
W
wangxinxin08 已提交
262 263 264 265 266

            # remove useless gt_class and gt_score after target calculated
            sample.pop('gt_class')
            sample.pop('gt_score')

Q
qingqing01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        return samples


@register_op
class Gt2FCOSTarget(BaseOperator):
    """
    Generate FCOS targets by groud truth data
    """

    def __init__(self,
                 object_sizes_boundary,
                 center_sampling_radius,
                 downsample_ratios,
                 norm_reg_targets=False):
        super(Gt2FCOSTarget, self).__init__()
        self.center_sampling_radius = center_sampling_radius
        self.downsample_ratios = downsample_ratios
        self.INF = np.inf
        self.object_sizes_boundary = [-1] + object_sizes_boundary + [self.INF]
        object_sizes_of_interest = []
        for i in range(len(self.object_sizes_boundary) - 1):
            object_sizes_of_interest.append([
                self.object_sizes_boundary[i], self.object_sizes_boundary[i + 1]
            ])
        self.object_sizes_of_interest = object_sizes_of_interest
        self.norm_reg_targets = norm_reg_targets

    def _compute_points(self, w, h):
        """
        compute the corresponding points in each feature map
        :param h: image height
        :param w: image width
        :return: points from all feature map
        """
        locations = []
        for stride in self.downsample_ratios:
            shift_x = np.arange(0, w, stride).astype(np.float32)
            shift_y = np.arange(0, h, stride).astype(np.float32)
            shift_x, shift_y = np.meshgrid(shift_x, shift_y)
            shift_x = shift_x.flatten()
            shift_y = shift_y.flatten()
            location = np.stack([shift_x, shift_y], axis=1) + stride // 2
            locations.append(location)
        num_points_each_level = [len(location) for location in locations]
        locations = np.concatenate(locations, axis=0)
        return locations, num_points_each_level

    def _convert_xywh2xyxy(self, gt_bbox, w, h):
        """
        convert the bounding box from style xywh to xyxy
        :param gt_bbox: bounding boxes normalized into [0, 1]
        :param w: image width
        :param h: image height
        :return: bounding boxes in xyxy style
        """
        bboxes = gt_bbox.copy()
        bboxes[:, [0, 2]] = bboxes[:, [0, 2]] * w
        bboxes[:, [1, 3]] = bboxes[:, [1, 3]] * h
        bboxes[:, 2] = bboxes[:, 0] + bboxes[:, 2]
        bboxes[:, 3] = bboxes[:, 1] + bboxes[:, 3]
        return bboxes

    def _check_inside_boxes_limited(self, gt_bbox, xs, ys,
                                    num_points_each_level):
        """
        check if points is within the clipped boxes
        :param gt_bbox: bounding boxes
        :param xs: horizontal coordinate of points
        :param ys: vertical coordinate of points
        :return: the mask of points is within gt_box or not
        """
        bboxes = np.reshape(
            gt_bbox, newshape=[1, gt_bbox.shape[0], gt_bbox.shape[1]])
        bboxes = np.tile(bboxes, reps=[xs.shape[0], 1, 1])
        ct_x = (bboxes[:, :, 0] + bboxes[:, :, 2]) / 2
        ct_y = (bboxes[:, :, 1] + bboxes[:, :, 3]) / 2
        beg = 0
        clipped_box = bboxes.copy()
        for lvl, stride in enumerate(self.downsample_ratios):
            end = beg + num_points_each_level[lvl]
            stride_exp = self.center_sampling_radius * stride
            clipped_box[beg:end, :, 0] = np.maximum(
                bboxes[beg:end, :, 0], ct_x[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 1] = np.maximum(
                bboxes[beg:end, :, 1], ct_y[beg:end, :] - stride_exp)
            clipped_box[beg:end, :, 2] = np.minimum(
                bboxes[beg:end, :, 2], ct_x[beg:end, :] + stride_exp)
            clipped_box[beg:end, :, 3] = np.minimum(
                bboxes[beg:end, :, 3], ct_y[beg:end, :] + stride_exp)
            beg = end
        l_res = xs - clipped_box[:, :, 0]
        r_res = clipped_box[:, :, 2] - xs
        t_res = ys - clipped_box[:, :, 1]
        b_res = clipped_box[:, :, 3] - ys
        clipped_box_reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
        inside_gt_box = np.min(clipped_box_reg_targets, axis=2) > 0
        return inside_gt_box

W
wangxinxin08 已提交
365
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
366 367 368 369
        assert len(self.object_sizes_of_interest) == len(self.downsample_ratios), \
            "object_sizes_of_interest', and 'downsample_ratios' should have same length."

        for sample in samples:
W
wangxinxin08 已提交
370
            # im, gt_bbox, gt_class, gt_score = sample
Q
qingqing01 已提交
371 372 373 374
            im = sample['image']
            bboxes = sample['gt_bbox']
            gt_class = sample['gt_class']
            # calculate the locations
W
wangxinxin08 已提交
375
            h, w = im.shape[1:3]
Q
qingqing01 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
            points, num_points_each_level = self._compute_points(w, h)
            object_scale_exp = []
            for i, num_pts in enumerate(num_points_each_level):
                object_scale_exp.append(
                    np.tile(
                        np.array([self.object_sizes_of_interest[i]]),
                        reps=[num_pts, 1]))
            object_scale_exp = np.concatenate(object_scale_exp, axis=0)

            gt_area = (bboxes[:, 2] - bboxes[:, 0]) * (
                bboxes[:, 3] - bboxes[:, 1])
            xs, ys = points[:, 0], points[:, 1]
            xs = np.reshape(xs, newshape=[xs.shape[0], 1])
            xs = np.tile(xs, reps=[1, bboxes.shape[0]])
            ys = np.reshape(ys, newshape=[ys.shape[0], 1])
            ys = np.tile(ys, reps=[1, bboxes.shape[0]])

            l_res = xs - bboxes[:, 0]
            r_res = bboxes[:, 2] - xs
            t_res = ys - bboxes[:, 1]
            b_res = bboxes[:, 3] - ys
            reg_targets = np.stack([l_res, t_res, r_res, b_res], axis=2)
            if self.center_sampling_radius > 0:
                is_inside_box = self._check_inside_boxes_limited(
                    bboxes, xs, ys, num_points_each_level)
            else:
                is_inside_box = np.min(reg_targets, axis=2) > 0
            # check if the targets is inside the corresponding level
            max_reg_targets = np.max(reg_targets, axis=2)
            lower_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 0], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            high_bound = np.tile(
                np.expand_dims(
                    object_scale_exp[:, 1], axis=1),
                reps=[1, max_reg_targets.shape[1]])
            is_match_current_level = \
                (max_reg_targets > lower_bound) & \
                (max_reg_targets < high_bound)
            points2gtarea = np.tile(
                np.expand_dims(
                    gt_area, axis=0), reps=[xs.shape[0], 1])
            points2gtarea[is_inside_box == 0] = self.INF
            points2gtarea[is_match_current_level == 0] = self.INF
            points2min_area = points2gtarea.min(axis=1)
            points2min_area_ind = points2gtarea.argmin(axis=1)
            labels = gt_class[points2min_area_ind] + 1
            labels[points2min_area == self.INF] = 0
            reg_targets = reg_targets[range(xs.shape[0]), points2min_area_ind]
            ctn_targets = np.sqrt((reg_targets[:, [0, 2]].min(axis=1) / \
                                  reg_targets[:, [0, 2]].max(axis=1)) * \
                                  (reg_targets[:, [1, 3]].min(axis=1) / \
                                   reg_targets[:, [1, 3]].max(axis=1))).astype(np.float32)
            ctn_targets = np.reshape(
                ctn_targets, newshape=[ctn_targets.shape[0], 1])
            ctn_targets[labels <= 0] = 0
            pos_ind = np.nonzero(labels != 0)
            reg_targets_pos = reg_targets[pos_ind[0], :]
            split_sections = []
            beg = 0
            for lvl in range(len(num_points_each_level)):
                end = beg + num_points_each_level[lvl]
                split_sections.append(end)
                beg = end
            labels_by_level = np.split(labels, split_sections, axis=0)
            reg_targets_by_level = np.split(reg_targets, split_sections, axis=0)
            ctn_targets_by_level = np.split(ctn_targets, split_sections, axis=0)
            for lvl in range(len(self.downsample_ratios)):
                grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
                grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
                if self.norm_reg_targets:
                    sample['reg_target{}'.format(lvl)] = \
                        np.reshape(
                            reg_targets_by_level[lvl] / \
                            self.downsample_ratios[lvl],
                            newshape=[grid_h, grid_w, 4])
                else:
                    sample['reg_target{}'.format(lvl)] = np.reshape(
                        reg_targets_by_level[lvl],
                        newshape=[grid_h, grid_w, 4])
                sample['labels{}'.format(lvl)] = np.reshape(
                    labels_by_level[lvl], newshape=[grid_h, grid_w, 1])
                sample['centerness{}'.format(lvl)] = np.reshape(
                    ctn_targets_by_level[lvl], newshape=[grid_h, grid_w, 1])
F
Feng Ni 已提交
461

462 463 464 465
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
Q
qingqing01 已提交
466 467 468 469 470
        return samples


@register_op
class Gt2TTFTarget(BaseOperator):
W
wangxinxin08 已提交
471
    __shared__ = ['num_classes']
Q
qingqing01 已提交
472 473 474 475 476 477 478 479 480 481 482
    """
    Gt2TTFTarget
    Generate TTFNet targets by ground truth data
    
    Args:
        num_classes(int): the number of classes.
        down_ratio(int): the down ratio from images to heatmap, 4 by default.
        alpha(float): the alpha parameter to generate gaussian target.
            0.54 by default.
    """

W
wangxinxin08 已提交
483
    def __init__(self, num_classes=80, down_ratio=4, alpha=0.54):
Q
qingqing01 已提交
484 485 486 487 488
        super(Gt2TTFTarget, self).__init__()
        self.down_ratio = down_ratio
        self.num_classes = num_classes
        self.alpha = alpha

W
wangxinxin08 已提交
489
    def __call__(self, samples, context=None):
Q
qingqing01 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        output_size = samples[0]['image'].shape[1]
        feat_size = output_size // self.down_ratio
        for sample in samples:
            heatmap = np.zeros(
                (self.num_classes, feat_size, feat_size), dtype='float32')
            box_target = np.ones(
                (4, feat_size, feat_size), dtype='float32') * -1
            reg_weight = np.zeros((1, feat_size, feat_size), dtype='float32')

            gt_bbox = sample['gt_bbox']
            gt_class = sample['gt_class']

            bbox_w = gt_bbox[:, 2] - gt_bbox[:, 0] + 1
            bbox_h = gt_bbox[:, 3] - gt_bbox[:, 1] + 1
            area = bbox_w * bbox_h
            boxes_areas_log = np.log(area)
            boxes_ind = np.argsort(boxes_areas_log, axis=0)[::-1]
            boxes_area_topk_log = boxes_areas_log[boxes_ind]
            gt_bbox = gt_bbox[boxes_ind]
            gt_class = gt_class[boxes_ind]

            feat_gt_bbox = gt_bbox / self.down_ratio
            feat_gt_bbox = np.clip(feat_gt_bbox, 0, feat_size - 1)
            feat_hs, feat_ws = (feat_gt_bbox[:, 3] - feat_gt_bbox[:, 1],
                                feat_gt_bbox[:, 2] - feat_gt_bbox[:, 0])

            ct_inds = np.stack(
                [(gt_bbox[:, 0] + gt_bbox[:, 2]) / 2,
                 (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2],
                axis=1) / self.down_ratio

            h_radiuses_alpha = (feat_hs / 2. * self.alpha).astype('int32')
            w_radiuses_alpha = (feat_ws / 2. * self.alpha).astype('int32')

            for k in range(len(gt_bbox)):
                cls_id = gt_class[k]
                fake_heatmap = np.zeros((feat_size, feat_size), dtype='float32')
                self.draw_truncate_gaussian(fake_heatmap, ct_inds[k],
                                            h_radiuses_alpha[k],
                                            w_radiuses_alpha[k])

                heatmap[cls_id] = np.maximum(heatmap[cls_id], fake_heatmap)
                box_target_inds = fake_heatmap > 0
                box_target[:, box_target_inds] = gt_bbox[k][:, None]

                local_heatmap = fake_heatmap[box_target_inds]
                ct_div = np.sum(local_heatmap)
                local_heatmap *= boxes_area_topk_log[k]
                reg_weight[0, box_target_inds] = local_heatmap / ct_div
            sample['ttf_heatmap'] = heatmap
            sample['ttf_box_target'] = box_target
            sample['ttf_reg_weight'] = reg_weight
542 543 544 545 546
            sample.pop('is_crowd', None)
            sample.pop('difficult', None)
            sample.pop('gt_class', None)
            sample.pop('gt_bbox', None)
            sample.pop('gt_score', None)
Q
qingqing01 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        return samples

    def draw_truncate_gaussian(self, heatmap, center, h_radius, w_radius):
        h, w = 2 * h_radius + 1, 2 * w_radius + 1
        sigma_x = w / 6
        sigma_y = h / 6
        gaussian = gaussian2D((h, w), sigma_x, sigma_y)

        x, y = int(center[0]), int(center[1])

        height, width = heatmap.shape[0:2]

        left, right = min(x, w_radius), min(width - x, w_radius + 1)
        top, bottom = min(y, h_radius), min(height - y, h_radius + 1)

        masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
        masked_gaussian = gaussian[h_radius - top:h_radius + bottom, w_radius -
                                   left:w_radius + right]
        if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
            heatmap[y - top:y + bottom, x - left:x + right] = np.maximum(
                masked_heatmap, masked_gaussian)
        return heatmap
W
wangxinxin08 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748


@register_op
class Gt2Solov2Target(BaseOperator):
    """Assign mask target and labels in SOLOv2 network.
    Args:
        num_grids (list): The list of feature map grids size.
        scale_ranges (list): The list of mask boundary range.
        coord_sigma (float): The coefficient of coordinate area length.
        sampling_ratio (float): The ratio of down sampling.
    """

    def __init__(self,
                 num_grids=[40, 36, 24, 16, 12],
                 scale_ranges=[[1, 96], [48, 192], [96, 384], [192, 768],
                               [384, 2048]],
                 coord_sigma=0.2,
                 sampling_ratio=4.0):
        super(Gt2Solov2Target, self).__init__()
        self.num_grids = num_grids
        self.scale_ranges = scale_ranges
        self.coord_sigma = coord_sigma
        self.sampling_ratio = sampling_ratio

    def _scale_size(self, im, scale):
        h, w = im.shape[:2]
        new_size = (int(w * float(scale) + 0.5), int(h * float(scale) + 0.5))
        resized_img = cv2.resize(
            im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        return resized_img

    def __call__(self, samples, context=None):
        sample_id = 0
        max_ins_num = [0] * len(self.num_grids)
        for sample in samples:
            gt_bboxes_raw = sample['gt_bbox']
            gt_labels_raw = sample['gt_class'] + 1
            im_c, im_h, im_w = sample['image'].shape[:]
            gt_masks_raw = sample['gt_segm'].astype(np.uint8)
            mask_feat_size = [
                int(im_h / self.sampling_ratio), int(im_w / self.sampling_ratio)
            ]
            gt_areas = np.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) *
                               (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))
            ins_ind_label_list = []
            idx = 0
            for (lower_bound, upper_bound), num_grid \
                    in zip(self.scale_ranges, self.num_grids):

                hit_indices = ((gt_areas >= lower_bound) &
                               (gt_areas <= upper_bound)).nonzero()[0]
                num_ins = len(hit_indices)

                ins_label = []
                grid_order = []
                cate_label = np.zeros([num_grid, num_grid], dtype=np.int64)
                ins_ind_label = np.zeros([num_grid**2], dtype=np.bool)

                if num_ins == 0:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
                    idx += 1
                    continue
                gt_bboxes = gt_bboxes_raw[hit_indices]
                gt_labels = gt_labels_raw[hit_indices]
                gt_masks = gt_masks_raw[hit_indices, ...]

                half_ws = 0.5 * (
                    gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.coord_sigma
                half_hs = 0.5 * (
                    gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.coord_sigma

                for seg_mask, gt_label, half_h, half_w in zip(
                        gt_masks, gt_labels, half_hs, half_ws):
                    if seg_mask.sum() == 0:
                        continue
                    # mass center
                    upsampled_size = (mask_feat_size[0] * 4,
                                      mask_feat_size[1] * 4)
                    center_h, center_w = ndimage.measurements.center_of_mass(
                        seg_mask)
                    coord_w = int(
                        (center_w / upsampled_size[1]) // (1. / num_grid))
                    coord_h = int(
                        (center_h / upsampled_size[0]) // (1. / num_grid))

                    # left, top, right, down
                    top_box = max(0,
                                  int(((center_h - half_h) / upsampled_size[0])
                                      // (1. / num_grid)))
                    down_box = min(num_grid - 1,
                                   int(((center_h + half_h) / upsampled_size[0])
                                       // (1. / num_grid)))
                    left_box = max(0,
                                   int(((center_w - half_w) / upsampled_size[1])
                                       // (1. / num_grid)))
                    right_box = min(num_grid - 1,
                                    int(((center_w + half_w) /
                                         upsampled_size[1]) // (1. / num_grid)))

                    top = max(top_box, coord_h - 1)
                    down = min(down_box, coord_h + 1)
                    left = max(coord_w - 1, left_box)
                    right = min(right_box, coord_w + 1)

                    cate_label[top:(down + 1), left:(right + 1)] = gt_label
                    seg_mask = self._scale_size(
                        seg_mask, scale=1. / self.sampling_ratio)
                    for i in range(top, down + 1):
                        for j in range(left, right + 1):
                            label = int(i * num_grid + j)
                            cur_ins_label = np.zeros(
                                [mask_feat_size[0], mask_feat_size[1]],
                                dtype=np.uint8)
                            cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[
                                1]] = seg_mask
                            ins_label.append(cur_ins_label)
                            ins_ind_label[label] = True
                            grid_order.append(sample_id * num_grid * num_grid +
                                              label)
                if ins_label == []:
                    ins_label = np.zeros(
                        [1, mask_feat_size[0], mask_feat_size[1]],
                        dtype=np.uint8)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        [sample_id * num_grid * num_grid + 0], dtype=np.int32)
                else:
                    ins_label = np.stack(ins_label, axis=0)
                    ins_ind_label_list.append(ins_ind_label)
                    sample['cate_label{}'.format(idx)] = cate_label.flatten()
                    sample['ins_label{}'.format(idx)] = ins_label
                    sample['grid_order{}'.format(idx)] = np.asarray(
                        grid_order, dtype=np.int32)
                    assert len(grid_order) > 0
                max_ins_num[idx] = max(
                    max_ins_num[idx],
                    sample['ins_label{}'.format(idx)].shape[0])
                idx += 1
            ins_ind_labels = np.concatenate([
                ins_ind_labels_level_img
                for ins_ind_labels_level_img in ins_ind_label_list
            ])
            fg_num = np.sum(ins_ind_labels)
            sample['fg_num'] = fg_num
            sample_id += 1

            sample.pop('is_crowd')
            sample.pop('gt_class')
            sample.pop('gt_bbox')
            sample.pop('gt_poly')
            sample.pop('gt_segm')

        # padding batch
        for data in samples:
            for idx in range(len(self.num_grids)):
                gt_ins_data = np.zeros(
                    [
                        max_ins_num[idx],
                        data['ins_label{}'.format(idx)].shape[1],
                        data['ins_label{}'.format(idx)].shape[2]
                    ],
                    dtype=np.uint8)
                gt_ins_data[0:data['ins_label{}'.format(idx)].shape[
                    0], :, :] = data['ins_label{}'.format(idx)]
                gt_grid_order = np.zeros([max_ins_num[idx]], dtype=np.int32)
                gt_grid_order[0:data['grid_order{}'.format(idx)].shape[
                    0]] = data['grid_order{}'.format(idx)]
                data['ins_label{}'.format(idx)] = gt_ins_data
                data['grid_order{}'.format(idx)] = gt_grid_order

        return samples
F
FL77N 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766


@register_op
class Gt2SparseRCNNTarget(BaseOperator):
    '''
    Generate SparseRCNN targets by groud truth data
    '''

    def __init__(self):
        super(Gt2SparseRCNNTarget, self).__init__()

    def __call__(self, samples, context=None):
        for sample in samples:
            im = sample["image"]
            h, w = im.shape[1:3]
            img_whwh = np.array([w, h, w, h], dtype=np.int32)
            sample["img_whwh"] = img_whwh
            if "scale_factor" in sample:
S
shangliang Xu 已提交
767 768 769
                sample["scale_factor_wh"] = np.array(
                    [sample["scale_factor"][1], sample["scale_factor"][0]],
                    dtype=np.float32)
F
FL77N 已提交
770
            else:
S
shangliang Xu 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
                sample["scale_factor_wh"] = np.array(
                    [1.0, 1.0], dtype=np.float32)

        return samples


@register_op
class PadMaskBatch(BaseOperator):
    """
    Pad a batch of samples so they can be divisible by a stride.
    The layout of each image should be 'CHW'.
    Args:
        pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
            height and width is divisible by `pad_to_stride`.
        return_pad_mask (bool): If `return_pad_mask = True`, return
            `pad_mask` for transformer.
    """

    def __init__(self, pad_to_stride=0, return_pad_mask=False):
        super(PadMaskBatch, self).__init__()
        self.pad_to_stride = pad_to_stride
        self.return_pad_mask = return_pad_mask

    def __call__(self, samples, context=None):
        """
        Args:
            samples (list): a batch of sample, each is dict.
        """
        coarsest_stride = self.pad_to_stride

        max_shape = np.array([data['image'].shape for data in samples]).max(
            axis=0)
        if coarsest_stride > 0:
            max_shape[1] = int(
                np.ceil(max_shape[1] / coarsest_stride) * coarsest_stride)
            max_shape[2] = int(
                np.ceil(max_shape[2] / coarsest_stride) * coarsest_stride)

        for data in samples:
            im = data['image']
            im_c, im_h, im_w = im.shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = im
            data['image'] = padding_im
            if 'semantic' in data and data['semantic'] is not None:
                semantic = data['semantic']
                padding_sem = np.zeros(
                    (1, max_shape[1], max_shape[2]), dtype=np.float32)
                padding_sem[:, :im_h, :im_w] = semantic
                data['semantic'] = padding_sem
            if 'gt_segm' in data and data['gt_segm'] is not None:
                gt_segm = data['gt_segm']
                padding_segm = np.zeros(
                    (gt_segm.shape[0], max_shape[1], max_shape[2]),
                    dtype=np.uint8)
                padding_segm[:, :im_h, :im_w] = gt_segm
                data['gt_segm'] = padding_segm
            if self.return_pad_mask:
                padding_mask = np.zeros(
                    (max_shape[1], max_shape[2]), dtype=np.float32)
                padding_mask[:im_h, :im_w] = 1.
                data['pad_mask'] = padding_mask

            if 'gt_rbox2poly' in data and data['gt_rbox2poly'] is not None:
                # ploy to rbox
                polys = data['gt_rbox2poly']
                rbox = bbox_utils.poly2rbox(polys)
                data['gt_rbox'] = rbox
F
FL77N 已提交
840 841

        return samples