parallel_executor.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import core
import multiprocessing
import framework
import executor
J
JiayiFeng 已提交
19
import warnings
Y
Yu Yang 已提交
20
import sys
21 22 23 24 25

__all__ = ['ParallelExecutor']


class ParallelExecutor(object):
X
Xin Pan 已提交
26 27
    def __init__(self,
                 use_cuda,
28 29
                 loss_name=None,
                 main_program=None,
X
Xin Pan 已提交
30
                 num_threads=None,
31
                 allow_op_delay=False,
Y
Yu Yang 已提交
32
                 share_vars_from=None,
C
chengduoZH 已提交
33 34
                 use_default_grad_scale=True,
                 use_nccl_allreduce=True):
35 36 37 38 39 40 41 42 43 44 45 46
        """
        ParallelExecutor can run program in parallel.

        Args:
            use_cuda(bool): Whether to use CUDA or not.
            loss_name(str, default None): The loss name must set in training.
            main_program(Program, default None): The program that need to run,
                if not provided, then default_main_program will be used.
            num_threads(int, default None): How many threads are used for
                training.
            allow_op_delay(bool, default False): Whether to delay and buffer
                some operators together for scheduling or not, which may
C
chengduoZH 已提交
47
                improve performance in some cases, default False.
48 49
            share_vars_from(ParallelExecutor, default None): If provied,
                it will share variables from the specified ParallelExecutor.
C
chengduoZH 已提交
50 51 52 53 54 55 56 57
            use_nccl_allreduce(bool, default True): Whether to use nccl_allreduce
                or not, if set True, the communication between different
                devices by nccl allReduce, which doesn't support updating sparse
                parameter, if set False, the communication between different
                devices by reduce_op and broadcast_op, which will distribute all
                the parameter gradients evenly to different device and updates
                the parameters, and finally broadcast to other device, this method
                support updating sparse parameter. Default True.
58 59
            use_default_grad_scale(bool, default True): If set True, a default
                scale value equal to `1./device_count` would be multiplied to
Y
yangyaming 已提交
60 61 62
                gradients of each device and scaled gradients would be
                aggregated. Otherwise, a customized scale value should be fed
                to the network.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

        Returns:
            A ParallelExecutor object.

        Raises:
            TypeError: If share_vars_from is provided, but not ParallelExecutor
                object.

        Examples:
            .. code-block:: python

              train_exe = fluid.ParallelExecutor(
                  use_cuda=True, loss_name=loss.name)
              test_exe = fluid.ParallelExecutor(
                  use_cuda=True,
                  main_program=test_program,
                  share_vars_from=train_exe)

81 82
              train_loss, = train_exe.run([loss.name], feed=feed_dict)
              test_loss, = test_exe.run([loss.name], feed=feed_dict)
83 84
        """

X
Xin Pan 已提交
85 86
        self._places = []
        self._act_places = []
87 88 89
        if use_cuda:
            for i in xrange(core.get_cuda_device_count()):
                p = core.Place()
X
Xin Pan 已提交
90 91 92
                self._act_places.append(core.CUDAPlace(i))
                p.set_place(self._act_places[-1])
                self._places.append(p)
93 94 95
        else:
            for i in xrange(multiprocessing.cpu_count()):
                p = core.Place()
L
Luo Tao 已提交
96
                self._act_places.append(core.CPUPlace())
X
Xin Pan 已提交
97 98 99
                p.set_place(self._act_places[-1])
                self._places.append(p)
        assert self._places, "no place for execution"
100 101

        if num_threads is None:
X
Xin Pan 已提交
102 103 104
            if use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduoZH 已提交
105
                num_threads = len(self._places) * 2
X
Xin Pan 已提交
106
            else:
107 108
                num_threads = min(
                    len(self._places) * 2, multiprocessing.cpu_count())
109

110 111
        main = main_program
        main = main if main else framework.default_main_program()
112 113
        scope = executor.global_scope()

114 115 116 117 118 119
        if share_vars_from and not isinstance(share_vars_from,
                                              ParallelExecutor):
            raise TypeError("share_vars_from must be ParallelExecutor.")
        local_scopes = share_vars_from.executor.local_scopes(
        ) if share_vars_from else []

T
typhoonzero 已提交
120
        self.persistable_vars = [
121
            v.name
122 123
            for v in filter(
                lambda var: var.persistable and var.type != core.VarDesc.VarType.RAW,
T
typhoonzero 已提交
124
                main.list_vars())
125 126
        ]

127 128 129
        self.executor = core.ParallelExecutor(
            num_threads,
            True if use_cuda else False,  # use_event
X
Xin Pan 已提交
130
            self._places,
131 132 133 134
            set([
                p.name for p in main.global_block().iter_parameters()
                if not p.stop_gradient
            ]),
T
typhoonzero 已提交
135
            set(self.persistable_vars),
136
            main.desc,
137
            loss_name if loss_name else '',
X
Xin Pan 已提交
138
            scope,
139
            local_scopes,
Y
Yu Yang 已提交
140
            allow_op_delay,
C
chengduoZH 已提交
141 142 143
            use_default_grad_scale,
            use_nccl_allreduce)

144 145
        self.scope = scope

Y
Yu Yang 已提交
146
    def run(self, fetch_list, feed=None, feed_dict=None):
X
Xin Pan 已提交
147
        """
Y
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

X
Xin Pan 已提交
172

Y
Yu Yang 已提交
173 174
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
175 176 177 178
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
                to each device.
Y
Yu Yang 已提交
179
            feed_dict: Alias for feed parameter, for backward compatibility.
Y
Yu Yang 已提交
180
                This parameter is deprecated.
Y
Yu Yang 已提交
181 182 183

        Returns: fetched result list.

X
Xin Pan 已提交
184
        """
185
        if feed is None and feed_dict is not None:
J
JiayiFeng 已提交
186
            feed = feed_dict
Y
Yu Yang 已提交
187
            print >> sys.stderr, "`feed_dict` is deprecated. Please use `feed=`"
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

            self.executor.feed_and_split_tensor_into_local_scopes(
                feed_tensor_dict)
        elif isinstance(feed, list) or isinstance(feed, tuple):
            if len(feed) != len(self._act_places):
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()

            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(tensor, self._act_places[i])
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
            self.executor.feed_tensors_into_local_scopes(res)
X
Xin Pan 已提交
224

225
        fetch_var_name = '@FETCHED_VAR_NAME@'
Y
Yu Yang 已提交
226
        self.executor.run(fetch_list, fetch_var_name)
227 228
        arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
        return [arr[i] for i in range(len(arr))]
T
typhoonzero 已提交
229 230 231

    def bcast_params(self):
        self.executor.bcast_params(set(self.persistable_vars))
Y
Yu Yang 已提交
232 233 234 235

    @property
    def device_count(self):
        return len(self._act_places)