PyDataProvider2.py 17.0 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cPickle
import logging
17 18 19 20
import collections
import functools
import itertools

Q
qijun 已提交
21 22
logging.basicConfig(format="[%(levelname)s %(asctime)s %(filename)s:%(lineno)s]"
                    " %(message)s")
Z
zhangjinchao01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class SequenceType(object):
    NO_SEQUENCE = 0
    SEQUENCE = 1
    SUB_SEQUENCE = 2


# TODO(yuyang18): Add string data type here.
class DataType(object):
    Dense = 0
    SparseNonValue = 1
    SparseValue = 2
    Index = 3


class CacheType(object):
    NO_CACHE = 0  # No cache at all

    # First pass, read data from python.  And store them in memory. Read from
    # memory during rest passes.
    CACHE_PASS_IN_MEM = 1


class InputType(object):
Y
Yu Yang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    """
    InputType is the base class for paddle input types.

    ..  note::

        this is a base class, and should never be used by user.

    :param dim: dimension of input. If the input is an integer, it means the
                value range. Otherwise, it means the size of layer.
    :type dim: int
    :param seq_type: sequence type of input. 0 means it is not a sequence. 1
                     means it is a variable length sequence. 2 means it is a
                     nested sequence.
    :type seq_type: int
    :param type: data type of input.
    :type type: int
    """
Z
zhangjinchao01 已提交
65 66 67 68 69 70 71 72 73
    __slots__ = ['dim', 'seq_type', 'type']

    def __init__(self, dim, seq_type, tp):
        self.dim = dim
        self.seq_type = seq_type
        self.type = tp


def dense_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
74 75 76 77 78 79 80 81 82 83 84 85
    """
    Dense Vector. It means the input feature is dense float vector. For example,
    if the input is an image with 28*28 pixels, the input of Paddle neural
    network should be a dense vector with dimension 784.

    :param dim: dimension of this vector.
    :type dim: int
    :param seq_type: sequence type of input.
    :type seq_type: int
    :return: An input type object.
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
86 87 88 89
    return InputType(dim, seq_type, DataType.Dense)


def sparse_non_value_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97 98 99 100
    """
    Sparse binary vector. It means the input feature is a sparse vector and the
    every element in this vector is either zero or one.

    :param dim: dimension of this vector.
    :type dim: int
    :param seq_type: sequence type of this input.
    :type seq_type: int
    :return: An input type object.
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
101 102 103 104
    return InputType(dim, seq_type, DataType.SparseNonValue)


def sparse_value_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
105 106 107 108 109 110 111 112 113 114 115
    """
    Sparse vector. It means the input feature is a sparse vector. Most of the
    elements in this vector are zero, others could be any float value.

    :param dim: dimension of this vector.
    :type dim: int
    :param seq_type: sequence type of this input.
    :type seq_type: int
    :return: An input type object.
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
116 117 118
    return InputType(dim, seq_type, DataType.SparseValue)


119
def index_slot(value_range, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
120 121 122 123 124
    """
    Data type of integer.

    :param seq_type: sequence type of this input.
    :type seq_type: int
125
    :param value_range: range of this integer.
Y
Yu Yang 已提交
126 127 128
    :type value_range: int
    :return: An input type object
    :rtype: InputType
129
    """
130
    return InputType(value_range, seq_type, DataType.Index)
Z
zhangjinchao01 已提交
131 132 133 134 135 136 137


dense_vector = dense_slot
sparse_binary_vector = sparse_non_value_slot
sparse_vector = sparse_value_slot
integer_value = index_slot

138

Z
zhangjinchao01 已提交
139
def dense_vector_sequence(dim):
Y
Yu Yang 已提交
140 141 142 143 144 145 146 147
    """
    Data type of a sequence of dense vector.

    :param dim: dimension of dense vector.
    :type dim: int
    :return: An input type object
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
148 149
    return dense_vector(dim, seq_type=SequenceType.SEQUENCE)

150

Z
zhangjinchao01 已提交
151 152 153
def dense_vector_sub_sequence(dim):
    return dense_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)

154

Z
zhangjinchao01 已提交
155
def sparse_binary_vector_sequence(dim):
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164
    """
    Data type of a sequence of sparse vector, which every element is either zero
     or one.

    :param dim: dimension of sparse vector.
    :type dim: int
    :return: An input type object
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
165 166
    return sparse_binary_vector(dim, seq_type=SequenceType.SEQUENCE)

167

Z
zhangjinchao01 已提交
168 169 170
def sparse_binary_vector_sub_sequence(dim):
    return sparse_binary_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)

171

Z
zhangjinchao01 已提交
172
def sparse_vector_sequence(dim):
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
    """
    Data type of a sequence of sparse vector, which most elements are zero,
    others could be any float value.

    :param dim: dimension of sparse vector.
    :type dim: int
    :return: An input type object
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
182 183
    return sparse_vector(dim, seq_type=SequenceType.SEQUENCE)

184

Z
zhangjinchao01 已提交
185 186 187
def sparse_vector_sub_sequence(dim):
    return sparse_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)

188

189
def integer_value_sequence(value_range):
Y
Yu Yang 已提交
190 191 192
    """
    Data type of a sequence of integer.

193
    :param value_range: range of each element.
Y
Yu Yang 已提交
194
    :type value_range: int
195
    """
196
    return integer_value(value_range, seq_type=SequenceType.SEQUENCE)
Z
zhangjinchao01 已提交
197

198

Z
zhangjinchao01 已提交
199 200 201
def integer_value_sub_sequence(dim):
    return integer_value(dim, seq_type=SequenceType.SUB_SEQUENCE)

W
wangyanfei01 已提交
202

203
integer_sequence = integer_value_sequence
Z
zhangjinchao01 已提交
204 205 206 207 208 209 210 211


class SingleSlotWrapper(object):
    def __init__(self, generator):
        self.generator = generator

    def __call__(self, obj, filename):
        for item in self.generator(obj, filename):
212 213 214 215
            if isinstance(item, dict):
                yield item
            else:
                yield [item]
Z
zhangjinchao01 已提交
216 217


218 219 220 221 222 223 224 225
class InputOrderWrapper(object):
    def __init__(self, generator, input_order):
        self.generator = generator
        self.input_order = input_order

    def __call__(self, obj, filename):
        for item in self.generator(obj, filename):
            if isinstance(item, dict):
Q
qijun 已提交
226 227 228 229
                yield [
                    item.get(input_name, None)
                    for input_name in self.input_order
                ]
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
            else:
                yield item


class CheckWrapper(object):
    def __init__(self, generator, input_types, check_fail_continue, logger):
        self.generator = generator
        self.input_types = input_types
        self.check_fail_continue = check_fail_continue
        self.logger = logger

    def __call__(self, obj, filename):
        for items in self.generator(obj, filename):
            try:
                assert len(items) == len(self.input_types)
                assert len(filter(lambda x: x is None, items)) == 0
                for item, input_type in itertools.izip(items, self.input_types):
                    callback = functools.partial(CheckWrapper.loop_callback,
                                                 input_type)

                    for _ in xrange(input_type.seq_type):
                        callback = functools.partial(CheckWrapper.loop_check,
                                                     callback)
                    callback(item)

                yield items
            except AssertionError as e:
                self.logger.warning(
Q
qijun 已提交
258 259
                    "Item (%s) is not fit the input type with error %s" %
                    (repr(item), repr(e)))
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

                if self.check_fail_continue:
                    continue
                else:
                    raise

    @staticmethod
    def loop_callback(input_type, each):
        assert isinstance(input_type, InputType)
        if input_type.type == DataType.Dense:
            assert isinstance(each, collections.Sequence)
            for d in each:
                assert isinstance(d, float)
            assert len(each, input_type.dim)
        elif input_type.type == DataType.Index:
            assert isinstance(each, int)
            assert each < input_type.dim
        elif input_type.type == DataType.SparseNonValue \
                or input_type.type == DataType.SparseValue:
            assert isinstance(each, collections.Sequence)
            sparse_id = set()
            for k in each:
                if input_type.type == DataType.SparseValue:
                    k, v = k
                    assert isinstance(v, float)
                assert isinstance(k, int)
                assert k < input_type.dim
                sparse_id.add(k)
            assert len(sparse_id) == len(each)
        else:
            raise RuntimeError("Not support input type")

    @staticmethod
    def loop_check(callback, item):
        for each in item:
            callback(each)

Y
Yu Yang 已提交
297

298 299 300 301 302 303
class CheckInputTypeWrapper(object):
    def __init__(self, generator, input_types, logger):
        self.generator = generator
        self.input_types = input_types
        self.logger = logger

Y
Yu Yang 已提交
304 305 306 307 308 309 310 311 312
    def __call__(self, obj, filename):
        for items in self.generator(obj, filename):
            try:
                # dict type is required for input_types when item is dict type 
                assert (isinstance(items, dict) and \
                        not isinstance(self.input_types, dict))==False
                yield items
            except AssertionError as e:
                self.logger.error(
313 314
                    "%s type is required for input type but got %s" %
                    (repr(type(items)), repr(type(self.input_types))))
Y
Yu Yang 已提交
315 316
                raise

317

Q
qijun 已提交
318 319 320
def provider(input_types=None,
             should_shuffle=None,
             pool_size=-1,
321
             min_pool_size=-1,
Z
zhangjinchao01 已提交
322 323 324
             can_over_batch_size=True,
             calc_batch_size=None,
             cache=CacheType.NO_CACHE,
Q
qijun 已提交
325 326 327
             check=False,
             check_fail_continue=False,
             init_hook=None,
Y
Yu Yang 已提交
328
             **outter_kwargs):
Z
zhangjinchao01 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    """
    Provider decorator. Use it to make a function into PyDataProvider2 object.
    In this function, user only need to get each sample for some train/test
    file.

    The basic usage is:

    ..  code-block:: python

        @provider(some data provider config here...)
        def process(settings, file_name):
            while not at end of file_name:
                sample = readOneSampleFromFile(file_name)
                yield sample.

    The configuration of data provider should be setup by\:

    :param input_types: Specify the input types, can also be set in init_hook.
347 348 349 350 351 352 353 354 355
                        It could be a list of InputType object. For example,
                        input_types=[dense_vector(9), integer_value(2)]. Or user
                        can set a dict of InputType object, which key is
                        data_layer's name. For example, input_types=\
                        {'img': img_features, 'label': label}. when using dict of
                        InputType, user could yield a dict of feature values, which
                        key is also data_layer's name.

    :type input_types: list|tuple|dict
356 357 358

    :param should_shuffle: True if data should shuffle. Pass None means shuffle
                           when is training and not to shuffle when is testing.
Z
zhangjinchao01 已提交
359
    :type should_shuffle: bool
360

Z
zhangjinchao01 已提交
361 362
    :param pool_size: Max number of sample in data pool.
    :type pool_size: int
363 364 365 366 367 368

    :param min_pool_size: Set minimal sample in data pool. The PaddlePaddle will
                          random pick sample in pool. So the min_pool_size
                          effect the randomize of data.
    :type min_pool_size: int

Z
zhangjinchao01 已提交
369 370 371 372 373
    :param can_over_batch_size: True if paddle can return a mini-batch larger
                                than batch size in settings. It is useful when
                                custom calculate one sample's batch_size.

                                It is very danger to set it to false and use
P
Peng Li 已提交
374
                                calc_batch_size together. Default is true.
375 376
    :type can_over_batch_size: bool

Z
zhangjinchao01 已提交
377 378 379
    :param calc_batch_size: a method to calculate each sample's batch size.
                            Default each sample's batch size is 1. But to you
                            can customize each sample's batch size.
380 381
    :type calc_batch_size: callable

Z
zhangjinchao01 已提交
382
    :param cache: Cache strategy of Data Provider. Default is CacheType.NO_CACHE
383
    :type cache: int
Z
zhangjinchao01 已提交
384 385 386 387 388

    :param init_hook: Initialize hook. Useful when data provider need load some
                      external data like dictionary. The parameter is
                      (settings, file_list, \*\*kwargs).

389 390 391 392 393
                      - settings. It is the global settings object. User can set
                        settings.input_types here.
                      - file_list. All file names for passed to data provider.
                      - is_train. Is this data provider used for training or not.
                      - kwargs. Other keyword arguments passed from
Z
zhangjinchao01 已提交
394
                        trainer_config's args parameter.
395 396 397 398 399 400 401 402 403 404 405
    :type init_hook: callable

    :param check: Check the yield data format is as same as input_types. Enable
                  this will make data provide process slow but it is very useful
                  for debug. Default is disabled.
    :type check: bool

    :param check_fail_continue: Continue train or not when check failed. Just
                                drop the wrong format data when it is True. Has
                                no effect when check set to False.
    :type check_fail_continue: bool
Z
zhangjinchao01 已提交
406 407 408 409 410 411 412 413 414
    """

    def __wrapper__(generator):
        class DataProvider(object):
            def __init__(self, file_list, **kwargs):
                self.logger = logging.getLogger("")
                self.logger.setLevel(logging.INFO)
                self.input_types = None
                self.should_shuffle = should_shuffle
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

                true_table = [1, 't', 'true', 'on']
                false_table = [0, 'f', 'false', 'off']
                if not isinstance(self.should_shuffle, bool) and \
                                self.should_shuffle is not None:

                    if isinstance(self.should_shuffle, basestring):
                        self.should_shuffle = self.should_shuffle.lower()

                    if self.should_shuffle in true_table:
                        self.should_shuffle = True
                    elif self.should_shuffle in false_table:
                        self.should_shuffle = False
                    else:
                        self.logger.warning(
                            "Could not recognize should_shuffle (%s), "
                            "just use default value of should_shuffle."
                            " Please set should_shuffle to bool value or "
Q
qijun 已提交
433 434 435
                            "something in %s" %
                            (repr(self.should_shuffle),
                             repr(true_table + false_table)))
436 437
                        self.should_shuffle = None

Z
zhangjinchao01 已提交
438 439 440 441 442 443
                self.pool_size = pool_size
                self.can_over_batch_size = can_over_batch_size
                self.calc_batch_size = calc_batch_size
                self.file_list = file_list
                self.generator = generator
                self.cache = cache
444 445 446
                self.min_pool_size = min_pool_size
                self.input_order = kwargs['input_order']
                self.check = check
Z
zhangjinchao01 已提交
447 448
                if init_hook is not None:
                    init_hook(self, file_list=file_list, **kwargs)
Y
Yu Yang 已提交
449 450 451 452 453 454 455 456

                if 'slots' in outter_kwargs:
                    self.logger.warning('setting slots value is deprecated, '
                                        'please use input_types instead.')
                    self.slots = outter_kwargs['slots']
                if input_types is not None:
                    self.slots = input_types

Z
zhangjinchao01 已提交
457 458
                if self.input_types is not None:
                    self.slots = self.input_types
Y
Yu Yang 已提交
459 460 461

                assert self.slots is not None, \
                    "Data Provider's input_types must be set"
Z
zhangjinchao01 已提交
462 463
                assert self.generator is not None

464 465 466 467 468
                use_dynamic_order = False
                if isinstance(self.slots, dict):  # reorder input_types
                    self.slots = [self.slots[ipt] for ipt in self.input_order]
                    use_dynamic_order = True

Z
zhangjinchao01 已提交
469 470 471
                if len(self.slots) == 1:
                    self.generator = SingleSlotWrapper(self.generator)

472 473 474
                if use_dynamic_order:
                    self.generator = InputOrderWrapper(self.generator,
                                                       self.input_order)
475
                else:
Y
Yu Yang 已提交
476 477
                    self.generator = CheckInputTypeWrapper(
                        self.generator, self.slots, self.logger)
478
                if self.check:
Q
qijun 已提交
479
                    self.generator = CheckWrapper(self.generator, self.slots,
480 481 482
                                                  check_fail_continue,
                                                  self.logger)

Z
zhangjinchao01 已提交
483 484 485 486 487 488 489 490 491 492 493 494
        return DataProvider

    return __wrapper__


def deserialize_args(args):
    """
    Internal use only.
    :param args:
    :return:
    """
    return cPickle.loads(args)