reshape_op.h 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yibing Liu 已提交
19 20 21 22

namespace paddle {
namespace operators {

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
    // only one dimension canbe set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                        "Invalid shape is given.");
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
  }
};

Q
QI JUN 已提交
110
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
111
class ReshapeKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
112
 public:
G
guosheng 已提交
113 114 115
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
116
    auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
Y
ying 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130
    framework::DDim out_dims = out->dims();
    if (shape_tensor) {
      auto *shape_data = shape_tensor->data<int>();
      if (platform::is_gpu_place(ctx.GetPlace())) {
        framework::Tensor cpu_shape_tensor;
        TensorCopy(*shape_tensor, platform::CPUPlace(), ctx.device_context(),
                   &cpu_shape_tensor);
        shape_data = cpu_shape_tensor.data<int>();
      }
      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ReshapeOp::ValidateShape(shape, in->dims());
    }
C
caoying03 已提交
131 132 133 134 135 136 137 138 139
    if (!in->lod().empty()) {
      PADDLE_ENFORCE_EQ(
          out_dims[0], in->dims()[0],
          "Reshape operator cannot reshape an input sequence batch "
          "into an output sequence batch that has a different "
          "number of time steps. Please consider using "
          "sequence_reshape op.");
    }

Y
Yan Chunwei 已提交
140
    bool inplace = ctx.Attr<bool>("inplace");
141
    out->Resize(out_dims);
Y
Yan Chunwei 已提交
142 143 144
    if (!inplace) {
      out->mutable_data<T>(ctx.GetPlace());
      framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out);
145
      // TensorCopy will resize to in_dims.
Y
Yan Chunwei 已提交
146 147 148 149 150
      out->Resize(out_dims);
    } else {
      out->ShareDataWith(*in);
      out->Resize(out_dims);
    }
Y
Yibing Liu 已提交
151 152 153
  }
};

Q
QI JUN 已提交
154
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
155
class ReshapeGradKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
156
 public:
G
guosheng 已提交
157 158 159
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
C
caoying03 已提交
160

Y
Yibing Liu 已提交
161
    d_x->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
162
    bool inplace = ctx.Attr<bool>("inplace");
Y
Yibing Liu 已提交
163 164

    auto in_dims = d_x->dims();
C
caoying03 已提交
165 166 167 168 169 170 171
    if (!inplace) {
      framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
      d_x->Resize(in_dims);
    } else {
      d_x->ShareDataWith(*d_out);
      d_x->Resize(in_dims);
    }
Y
Yibing Liu 已提交
172 173
  }
};
H
Helin Wang 已提交
174 175
}  // namespace operators
}  // namespace paddle