ttf_head.py 10.7 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
W
wangguanzhong 已提交
22
from ppdet.modeling.layers import DeformableConvV2, LiteConv
F
Feng Ni 已提交
23 24 25 26 27
import numpy as np


@register
class HMHead(nn.Layer):
F
Feng Ni 已提交
28 29 30 31 32 33
    """
    Args:
        ch_in (int): The channel number of input Tensor.
        ch_out (int): The channel number of output Tensor.
        num_classes (int): Number of classes.
        conv_num (int): The convolution number of hm_feat.
W
wangguanzhong 已提交
34 35 36 37 38
        dcn_head(bool): whether use dcn in head. False by default. 
        lite_head(bool): whether use lite version. False by default.
        norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
            bn by default

F
Feng Ni 已提交
39 40 41
    Return:
        Heatmap head output
    """
W
wangguanzhong 已提交
42
    __shared__ = ['num_classes', 'norm_type']
F
Feng Ni 已提交
43

W
wangguanzhong 已提交
44 45 46 47 48 49 50 51 52
    def __init__(
            self,
            ch_in,
            ch_out=128,
            num_classes=80,
            conv_num=2,
            dcn_head=False,
            lite_head=False,
            norm_type='bn', ):
F
Feng Ni 已提交
53 54 55 56
        super(HMHead, self).__init__()
        head_conv = nn.Sequential()
        for i in range(conv_num):
            name = 'conv.{}'.format(i)
W
wangguanzhong 已提交
57 58 59 60 61 62 63
            if lite_head:
                lite_name = 'hm.' + name
                head_conv.add_sublayer(
                    lite_name,
                    LiteConv(
                        in_channels=ch_in if i == 0 else ch_out,
                        out_channels=ch_out,
64
                        norm_type=norm_type))
W
wangguanzhong 已提交
65 66 67 68 69 70 71 72 73
                head_conv.add_sublayer(lite_name + '.act', nn.ReLU6())
            else:
                if dcn_head:
                    head_conv.add_sublayer(
                        name,
                        DeformableConvV2(
                            in_channels=ch_in if i == 0 else ch_out,
                            out_channels=ch_out,
                            kernel_size=3,
W
wangguanzhong 已提交
74
                            weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
W
wangguanzhong 已提交
75 76 77 78 79 80 81 82 83 84 85 86
                else:
                    head_conv.add_sublayer(
                        name,
                        nn.Conv2D(
                            in_channels=ch_in if i == 0 else ch_out,
                            out_channels=ch_out,
                            kernel_size=3,
                            padding=1,
                            weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
                            bias_attr=ParamAttr(
                                learning_rate=2., regularizer=L2Decay(0.))))
                head_conv.add_sublayer(name + '.act', nn.ReLU())
87
        self.feat = head_conv
F
Feng Ni 已提交
88
        bias_init = float(-np.log((1 - 0.01) / 0.01))
89 90 91 92 93 94 95 96 97
        self.head = nn.Conv2D(
            in_channels=ch_out,
            out_channels=num_classes,
            kernel_size=1,
            weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
            bias_attr=ParamAttr(
                learning_rate=2.,
                regularizer=L2Decay(0.),
                initializer=Constant(bias_init)))
F
Feng Ni 已提交
98 99 100 101 102 103 104 105 106

    def forward(self, feat):
        out = self.feat(feat)
        out = self.head(out)
        return out


@register
class WHHead(nn.Layer):
F
Feng Ni 已提交
107 108 109 110 111
    """
    Args:
        ch_in (int): The channel number of input Tensor.
        ch_out (int): The channel number of output Tensor.
        conv_num (int): The convolution number of wh_feat.
W
wangguanzhong 已提交
112 113 114 115
        dcn_head(bool): whether use dcn in head. False by default.
        lite_head(bool): whether use lite version. False by default.
        norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
            bn by default
F
Feng Ni 已提交
116 117 118
    Return:
        Width & Height head output
    """
W
wangguanzhong 已提交
119
    __shared__ = ['norm_type']
F
Feng Ni 已提交
120

W
wangguanzhong 已提交
121 122 123 124 125 126 127
    def __init__(self,
                 ch_in,
                 ch_out=64,
                 conv_num=2,
                 dcn_head=False,
                 lite_head=False,
                 norm_type='bn'):
F
Feng Ni 已提交
128 129 130 131
        super(WHHead, self).__init__()
        head_conv = nn.Sequential()
        for i in range(conv_num):
            name = 'conv.{}'.format(i)
W
wangguanzhong 已提交
132 133 134 135 136 137 138
            if lite_head:
                lite_name = 'wh.' + name
                head_conv.add_sublayer(
                    lite_name,
                    LiteConv(
                        in_channels=ch_in if i == 0 else ch_out,
                        out_channels=ch_out,
139
                        norm_type=norm_type))
W
wangguanzhong 已提交
140 141 142 143 144 145 146 147 148
                head_conv.add_sublayer(lite_name + '.act', nn.ReLU6())
            else:
                if dcn_head:
                    head_conv.add_sublayer(
                        name,
                        DeformableConvV2(
                            in_channels=ch_in if i == 0 else ch_out,
                            out_channels=ch_out,
                            kernel_size=3,
W
wangguanzhong 已提交
149
                            weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
W
wangguanzhong 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
                else:
                    head_conv.add_sublayer(
                        name,
                        nn.Conv2D(
                            in_channels=ch_in if i == 0 else ch_out,
                            out_channels=ch_out,
                            kernel_size=3,
                            padding=1,
                            weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
                            bias_attr=ParamAttr(
                                learning_rate=2., regularizer=L2Decay(0.))))
                head_conv.add_sublayer(name + '.act', nn.ReLU())

163 164 165 166 167 168 169 170
        self.feat = head_conv
        self.head = nn.Conv2D(
            in_channels=ch_out,
            out_channels=4,
            kernel_size=1,
            weight_attr=ParamAttr(initializer=Normal(0, 0.001)),
            bias_attr=ParamAttr(
                learning_rate=2., regularizer=L2Decay(0.)))
F
Feng Ni 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183

    def forward(self, feat):
        out = self.feat(feat)
        out = self.head(out)
        out = F.relu(out)
        return out


@register
class TTFHead(nn.Layer):
    """
    TTFHead
    Args:
F
Feng Ni 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        in_channels (int): the channel number of input to TTFHead.
        num_classes (int): the number of classes, 80 by default.
        hm_head_planes (int): the channel number in heatmap head,
            128 by default.
        wh_head_planes (int): the channel number in width & height head,
            64 by default.
        hm_head_conv_num (int): the number of convolution in heatmap head,
            2 by default.
        wh_head_conv_num (int): the number of convolution in width & height
            head, 2 by default.
        hm_loss (object): Instance of 'CTFocalLoss'.
        wh_loss (object): Instance of 'GIoULoss'.
        wh_offset_base (float): the base offset of width and height,
            16.0 by default.
        down_ratio (int): the actual down_ratio is calculated by base_down_ratio
            (default 16) and the number of upsample layers.
W
wangguanzhong 已提交
200 201 202
        lite_head(bool): whether use lite version. False by default.
        norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
            bn by default
F
Feng Ni 已提交
203 204
    """

W
wangguanzhong 已提交
205
    __shared__ = ['num_classes', 'down_ratio', 'norm_type']
206
    __inject__ = ['hm_loss', 'wh_loss']
F
Feng Ni 已提交
207 208

    def __init__(self,
209 210 211 212 213 214
                 in_channels,
                 num_classes=80,
                 hm_head_planes=128,
                 wh_head_planes=64,
                 hm_head_conv_num=2,
                 wh_head_conv_num=2,
F
Feng Ni 已提交
215 216 217
                 hm_loss='CTFocalLoss',
                 wh_loss='GIoULoss',
                 wh_offset_base=16.,
W
wangguanzhong 已提交
218 219 220 221
                 down_ratio=4,
                 dcn_head=False,
                 lite_head=False,
                 norm_type='bn'):
F
Feng Ni 已提交
222
        super(TTFHead, self).__init__()
223 224
        self.in_channels = in_channels
        self.hm_head = HMHead(in_channels, hm_head_planes, num_classes,
W
wangguanzhong 已提交
225 226 227
                              hm_head_conv_num, dcn_head, lite_head, norm_type)
        self.wh_head = WHHead(in_channels, wh_head_planes, wh_head_conv_num,
                              dcn_head, lite_head, norm_type)
F
Feng Ni 已提交
228 229 230 231 232 233
        self.hm_loss = hm_loss
        self.wh_loss = wh_loss

        self.wh_offset_base = wh_offset_base
        self.down_ratio = down_ratio

234 235 236 237 238 239
    @classmethod
    def from_config(cls, cfg, input_shape):
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
        return {'in_channels': input_shape.channels, }

F
Feng Ni 已提交
240 241 242 243 244 245
    def forward(self, feats):
        hm = self.hm_head(feats)
        wh = self.wh_head(feats) * self.wh_offset_base
        return hm, wh

    def filter_box_by_weight(self, pred, target, weight):
F
Feng Ni 已提交
246 247 248
        """
        Filter out boxes where ttf_reg_weight is 0, only keep positive samples.
        """
F
Feng Ni 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        index = paddle.nonzero(weight > 0)
        index.stop_gradient = True
        weight = paddle.gather_nd(weight, index)
        pred = paddle.gather_nd(pred, index)
        target = paddle.gather_nd(target, index)
        return pred, target, weight

    def get_loss(self, pred_hm, pred_wh, target_hm, box_target, target_weight):
        pred_hm = paddle.clip(F.sigmoid(pred_hm), 1e-4, 1 - 1e-4)
        hm_loss = self.hm_loss(pred_hm, target_hm)
        H, W = target_hm.shape[2:]
        mask = paddle.reshape(target_weight, [-1, H, W])
        avg_factor = paddle.sum(mask) + 1e-4

        base_step = self.down_ratio
        shifts_x = paddle.arange(0, W * base_step, base_step, dtype='int32')
        shifts_y = paddle.arange(0, H * base_step, base_step, dtype='int32')
        shift_y, shift_x = paddle.tensor.meshgrid([shifts_y, shifts_x])
        base_loc = paddle.stack([shift_x, shift_y], axis=0)
        base_loc.stop_gradient = True

        pred_boxes = paddle.concat(
            [0 - pred_wh[:, 0:2, :, :] + base_loc, pred_wh[:, 2:4] + base_loc],
            axis=1)
        pred_boxes = paddle.transpose(pred_boxes, [0, 2, 3, 1])
        boxes = paddle.transpose(box_target, [0, 2, 3, 1])
        boxes.stop_gradient = True

        pred_boxes, boxes, mask = self.filter_box_by_weight(pred_boxes, boxes,
                                                            mask)
        mask.stop_gradient = True
        wh_loss = self.wh_loss(pred_boxes, boxes, iou_weight=mask.unsqueeze(1))
        wh_loss = wh_loss / avg_factor

        ttf_loss = {'hm_loss': hm_loss, 'wh_loss': wh_loss}
        return ttf_loss