ssd_head.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
19 20 21
from paddle.regularizer import L2Decay
from paddle import ParamAttr

22 23
from ..layers import AnchorGeneratorSSD

24 25 26 27 28 29 30

class SepConvLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 padding=1,
31
                 conv_decay=0):
32 33 34 35 36 37 38 39
        super(SepConvLayer, self).__init__()
        self.dw_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=1,
            padding=padding,
            groups=in_channels,
40
            weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
41 42 43 44
            bias_attr=False)

        self.bn = nn.BatchNorm2D(
            in_channels,
45 46
            weight_attr=ParamAttr(regularizer=L2Decay(0.)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.)))
47 48 49 50 51 52 53

        self.pw_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            padding=0,
54
            weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
55 56 57 58 59 60 61
            bias_attr=False)

    def forward(self, x):
        x = self.dw_conv(x)
        x = F.relu6(self.bn(x))
        x = self.pw_conv(x)
        return x
Q
qingqing01 已提交
62 63 64 65


@register
class SSDHead(nn.Layer):
66 67 68 69 70 71 72 73 74 75 76 77 78 79
    """
    SSDHead

    Args:
        num_classes (int): Number of classes
        in_channels (list): Number of channels per input feature
        anchor_generator (dict): Configuration of 'AnchorGeneratorSSD' instance
        kernel_size (int): Conv kernel size
        padding (int): Conv padding
        use_sepconv (bool): Use SepConvLayer if true
        conv_decay (float): Conv regularization coeff
        loss (object): 'SSDLoss' instance
    """

Q
qingqing01 已提交
80 81 82 83
    __shared__ = ['num_classes']
    __inject__ = ['anchor_generator', 'loss']

    def __init__(self,
84
                 num_classes=80,
Q
qingqing01 已提交
85
                 in_channels=(512, 1024, 512, 256, 256, 256),
86
                 anchor_generator=AnchorGeneratorSSD().__dict__,
87 88 89 90
                 kernel_size=3,
                 padding=1,
                 use_sepconv=False,
                 conv_decay=0.,
Q
qingqing01 已提交
91 92
                 loss='SSDLoss'):
        super(SSDHead, self).__init__()
93 94
        # add background class
        self.num_classes = num_classes + 1
Q
qingqing01 已提交
95 96 97 98
        self.in_channels = in_channels
        self.anchor_generator = anchor_generator
        self.loss = loss

99 100 101 102
        if isinstance(anchor_generator, dict):
            self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)

        self.num_priors = self.anchor_generator.num_priors
Q
qingqing01 已提交
103 104 105
        self.box_convs = []
        self.score_convs = []
        for i, num_prior in enumerate(self.num_priors):
106 107 108 109
            box_conv_name = "boxes{}".format(i)
            if not use_sepconv:
                box_conv = self.add_sublayer(
                    box_conv_name,
Q
qingqing01 已提交
110 111 112
                    nn.Conv2D(
                        in_channels=in_channels[i],
                        out_channels=num_prior * 4,
113 114 115 116 117 118 119 120 121 122
                        kernel_size=kernel_size,
                        padding=padding))
            else:
                box_conv = self.add_sublayer(
                    box_conv_name,
                    SepConvLayer(
                        in_channels=in_channels[i],
                        out_channels=num_prior * 4,
                        kernel_size=kernel_size,
                        padding=padding,
123
                        conv_decay=conv_decay))
124 125 126 127 128 129
            self.box_convs.append(box_conv)

            score_conv_name = "scores{}".format(i)
            if not use_sepconv:
                score_conv = self.add_sublayer(
                    score_conv_name,
Q
qingqing01 已提交
130 131
                    nn.Conv2D(
                        in_channels=in_channels[i],
132
                        out_channels=num_prior * self.num_classes,
133 134 135 136 137 138 139
                        kernel_size=kernel_size,
                        padding=padding))
            else:
                score_conv = self.add_sublayer(
                    score_conv_name,
                    SepConvLayer(
                        in_channels=in_channels[i],
140
                        out_channels=num_prior * self.num_classes,
141 142
                        kernel_size=kernel_size,
                        padding=padding,
143
                        conv_decay=conv_decay))
144
            self.score_convs.append(score_conv)
Q
qingqing01 已提交
145

146 147 148 149 150
    @classmethod
    def from_config(cls, cfg, input_shape):
        return {'in_channels': [i.channels for i in input_shape], }

    def forward(self, feats, image, gt_bbox=None, gt_class=None):
Q
qingqing01 已提交
151 152 153
        box_preds = []
        cls_scores = []
        prior_boxes = []
K
Kaipeng Deng 已提交
154 155
        for feat, box_conv, score_conv in zip(feats, self.box_convs,
                                              self.score_convs):
Q
qingqing01 已提交
156 157 158 159 160 161 162 163 164 165 166 167
            box_pred = box_conv(feat)
            box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
            box_pred = paddle.reshape(box_pred, [0, -1, 4])
            box_preds.append(box_pred)

            cls_score = score_conv(feat)
            cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
            cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
            cls_scores.append(cls_score)

        prior_boxes = self.anchor_generator(feats, image)

168 169 170 171
        if self.training:
            return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
                                 prior_boxes)
        else:
K
Kaipeng Deng 已提交
172
            return (box_preds, cls_scores), prior_boxes
Q
qingqing01 已提交
173

174 175
    def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
        return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)