BufferArg.h 7.6 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"

namespace paddle {

enum BufferType {
  TENSOR_NORMAL = 0,
  TENSOR_SEQUENCE_ID = 1,
  TENSOR_SEQUENCE_DATA = 2,
  TENSOR_SPARSE = 3
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

class BufferArg;
class SequenceArg;
class SparseMatrixArg;
typedef std::shared_ptr<BufferArg> BufferArgPtr;

46 47 48 49 50 51 52 53 54 55 56 57 58 59
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
H
hedaoyuan 已提交
60
class BufferArg {
61 62 63 64 65 66 67 68 69 70 71 72 73 74
public:
  // ArgType is only used by output BufferArg.
  // For input argument, argType_ is ignored.
  // For output argument, need to set the argType_ of the BufferArg.
  enum ArgType {
    UNSPECIFIED = 0,
    ASSIGN_TO = 1,
    ADD_TO = 2,
  };

  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
75 76 77 78 79 80 81 82
public:
  BufferArg(void* buf, ValueType valueType, const TensorShape& shape)
      : buf_(buf), valueType_(valueType), shape_(shape) {}

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

  BufferArg(const Matrix& matrix)
83 84
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
85 86 87 88 89 90 91
        valueType_(DataType<real>::value),
        shape_(2) {
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

  BufferArg(const Matrix& matrix, const TensorShape& shape)
92 93
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
94 95 96 97 98 99
        valueType_(DataType<real>::value),
        shape_(shape) {
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

  BufferArg(const Vector& vector)
100 101
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
102 103 104 105 106 107
        valueType_(DataType<real>::value),
        shape_(1) {
    shape_.setDim(0, vector.getSize());
  }

  BufferArg(const IVector& vector)
108 109
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
110 111
        valueType_(VALUE_TYPE_INT32),
        shape_(1) {
H
hedaoyuan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
    CHECK_EQ(2, shape_.ndims());
    return typename Tensor<real, DType>::Matrix(
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
    CHECK_EQ(1, shape_.ndims());
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
  BufferType bufferType_;
155
  ArgType argType_ = UNSPECIFIED;
H
hedaoyuan 已提交
156 157 158 159 160 161 162
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
163
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class SequenceIdArg : public BufferArg {
public:
  SequenceIdArg(void* buf, const TensorShape& shape)
      : BufferArg(buf, VALUE_TYPE_INT32, shape) {
    CHECK_EQ(shape_.ndims(), 1);
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

// sequence data
class SequenceArg : public BufferArg {
public:
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
              const SequenceIdArg& startPositions)
      : BufferArg(buf, valueType, shape), startPositions_(startPositions) {}

  SequenceArg(const Matrix& matrix, const IVector& vector)
      : BufferArg(matrix), startPositions_(vector) {}

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
                  SparseDataType type)
      : BufferArg(buf, valueType, shape),
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
        type_(type) {
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
    CHECK_EQ(shape_.ndims(), 2);
    CHECK_EQ(row_.shape().ndims(), 1);
    CHECK_EQ(col_.shape().ndims(), 1);
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

  SparseMatrixArg(const CpuSparseMatrix& sparse)
      : BufferArg(sparse),
H
hedaoyuan 已提交
237 238
        row_(reinterpret_cast<void*>(sparse.getRows()), VALUE_TYPE_INT32),
        col_(reinterpret_cast<void*>(sparse.getCols()), VALUE_TYPE_INT32) {}
H
hedaoyuan 已提交
239 240 241

  SparseMatrixArg(const GpuSparseMatrix& sparse)
      : BufferArg(sparse),
H
hedaoyuan 已提交
242 243
        row_(reinterpret_cast<void*>(sparse.getRows()), VALUE_TYPE_INT32),
        col_(reinterpret_cast<void*>(sparse.getCols()), VALUE_TYPE_INT32) {}
H
hedaoyuan 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle