README.md 21.5 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6
English | [简体中文](README_cn.md)

# MOT (Multi-Object Tracking)

## Table of Contents
- [Introduction](#Introduction)
7
- [Installation](#Installation)
G
George Ni 已提交
8
- [Model Zoo](#Model_Zoo)
G
George Ni 已提交
9
- [Feature Tracking Model](#Feature_Tracking_Model)
G
George Ni 已提交
10 11 12 13 14
- [Dataset Preparation](#Dataset_Preparation)
- [Getting Start](#Getting_Start)
- [Citations](#Citations)

## Introduction
G
George Ni 已提交
15
The current mainstream multi-objective tracking (MOT) algorithm is mainly composed of two parts: detection and embedding. Detection aims to detect the potential targets in each frame of the video. Embedding assigns and updates the detected target to the corresponding track (named ReID task). According to the different implementation of these two parts, it can be divided into **SDE** series and **JDE** series algorithm.
G
George Ni 已提交
16

G
George Ni 已提交
17
- **SDE** (Separate Detection and Embedding) is a kind of algorithm which completely separates Detection and Embedding. The most representative is **DeepSORT** algorithm. This design can make the system fit any kind of detectors without difference, and can be improved for each part separately. However, due to the series process, the speed is slow. Time-consuming is a great challenge in the construction of real-time MOT system.
G
George Ni 已提交
18

G
George Ni 已提交
19 20 21 22 23 24 25 26 27
- **JDE** (Joint Detection and Embedding) is to learn detection and embedding simultaneously in a shared neural network, and set the loss function with a multi task learning approach. The representative algorithms are **JDE** and **FairMOT**. This design can achieve high-precision real-time MOT performance.

Paddledetection implements three MOT algorithms of these two series.

- [DeepSORT](https://arxiv.org/abs/1812.00442) (Deep Cosine Metric Learning SORT) extends the original [SORT](https://arxiv.org/abs/1703.07402) (Simple Online and Realtime Tracking) algorithm, it adds a CNN model to extract features in image of human part bounded by a detector. It integrates appearance information based on a deep appearance descriptor, and assigns and updates the detected targets to the existing corresponding trajectories like ReID task. The detection bboxes result required by DeepSORT can be generated by any detection model, and then the saved detection result file can be loaded for tracking. Here we select the `PCB + Pyramid ResNet101` model provided by [PaddleClas](https://github.com/PaddlePaddle/PaddleClas) as the ReID model.

- [JDE](https://arxiv.org/abs/1909.12605) (Joint Detection and Embedding) learns the object detection task and appearance embedding task simutaneously in a shared neural network. And the detection results and the corresponding embeddings are also outputed at the same time. JDE original paper is based on an Anchor Base detector YOLOv3 , adding a new ReID branch to learn embeddings. The training process is constructed as a multi-task learning problem, taking into account both accuracy and speed.

- [FairMOT](https://arxiv.org/abs/2004.01888) is based on an Anchor Free detector Centernet, which overcomes the problem of anchor and feature misalignment in anchor based detection framework. The fusion of deep and shallow features enables the detection and ReID tasks to obtain the required features respectively. It also uses low dimensional ReID features. FairMOT is a simple baseline composed of two homogeneous branches propose to predict the pixel level target score and ReID features. It achieves the fairness between the two tasks and  obtains a higher level of real-time MOT performance.
G
George Ni 已提交
28 29 30 31 32

<div align="center">
  <img src="../../docs/images/mot16_jde.gif" width=500 />
</div>

33 34 35 36 37 38 39 40 41 42

## Installation

Install all the related dependencies for MOT:
```
pip install lap sklearn motmetrics openpyxl cython_bbox
or
pip install -r requirements.txt
```
**Notes:**
G
George Ni 已提交
43
- Install `cython_bbox` for Windows: `pip install -e git+https://github.com/samson-wang/cython_bbox.git#egg=cython-bbox`. You can refer to this [tutorial](https://stackoverflow.com/questions/60349980/is-there-a-way-to-install-cython-bbox-for-windows).
44
- Evaluation on Windows CUDA 11 environment may not be normally. It will be repaired as soon as possible. You can change to CUDA 10.2 or CUDA 10.1 environment for normal evaluation.
45
- Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
46 47


G
George Ni 已提交
48 49
## Model Zoo

50
### DeepSORT Results on MOT-16 Training Set
G
George Ni 已提交
51

52 53 54 55
| backbone  | input shape | MOTA | IDF1 |  IDS  |   FP  |   FN  |   FPS  | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 |  72.2  |  60.5  | 998  |  8054  | 21644 |  - | [det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 |  68.3  |  56.5  | 1722 |  17337 | 15890 |  - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
G
George Ni 已提交
56

57
### DeepSORT Results on MOT-16 Test Set
G
George Ni 已提交
58

59 60 61 62
| backbone  | input shape | MOTA | IDF1 |  IDS  |   FP  |   FN  |   FPS  | det result/model |ReID model| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: | :---: |
| ResNet-101 | 1088x608 |  64.1  |  53.0  | 1024  |  12457  | 51919 |  - |[det result](https://dataset.bj.bcebos.com/mot/det_results_dir.zip) |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
| ResNet-101 | 1088x608 |  61.2  |  48.5  | 1799  |  25796  | 43232 |  - | [det model](https://paddledet.bj.bcebos.com/models/mot/jde_yolov3_darknet53_30e_1088x608.pdparams)  |[ReID model](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
G
George Ni 已提交
63 64

**Notes:**
65 66 67
DeepSORT does not need to train on MOT dataset, only used for evaluation. Now it supports two evaluation methods.

- 1.Load the result file and the ReID model. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
G
George Ni 已提交
68 69 70 71 72 73 74 75 76 77
```
det_results_dir
   |——————MOT16-02.txt
   |——————MOT16-04.txt
   |——————MOT16-05.txt
   |——————MOT16-09.txt
   |——————MOT16-10.txt
   |——————MOT16-11.txt
   |——————MOT16-13.txt
```
78
For MOT16 dataset, you can download a detection result after matching called det_results_dir.zip provided by PaddleDetection:
G
George Ni 已提交
79 80 81
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
82
If you use a stronger detection model, you can get better results. Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
G
George Ni 已提交
83
```
84
[frame_id],[bb_left],[bb_top],[width],[height],[conf]
G
George Ni 已提交
85 86 87 88
```
- `frame_id` is the frame number of the image
- `bb_left` is the X coordinate of the left bound of the object box
- `bb_top` is the Y coordinate of the upper bound of the object box
G
George Ni 已提交
89
- `width,height` is the pixel width and height
G
George Ni 已提交
90
- `conf` is the object score with default value `1` (the results had been filtered out according to the detection score threshold)
G
George Ni 已提交
91

92 93
- 2.Load the detection model and the ReID model at the same time. Here, the JDE version of YOLOv3 is selected. For more detail of configuration, see `configs/mot/deepsort/_base_/deepsort_yolov3_darknet53_pcb_pyramid_r101.yml`.

G
George Ni 已提交
94

95
### JDE Results on MOT-16 Training Set
G
George Ni 已提交
96 97 98 99 100 101 102

| backbone           | input shape | MOTA | IDF1  |  IDS  |   FP  |  FN  |  FPS  | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53          | 1088x608 |  72.0  |  66.9  | 1397  |  7274  | 22209 |   -   |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53          | 864x480 |  69.1  |  64.7  | 1539  |  7544  | 25046 |   -   |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53          | 576x320 |  63.7  |  64.4  | 1310  |  6782  | 31964 |   -   |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |

103
### JDE Results on MOT-16 Test Set
G
George Ni 已提交
104 105 106 107 108 109 110 111 112 113 114 115

| backbone           | input shape | MOTA | IDF1  |  IDS  |   FP  |  FN  |  FPS  | download | config |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53(paper)   | 1088x608 |  64.4  |  55.8  | 1544  |    -    |   -   |   -   |   -  |   -   |
| DarkNet53          | 1088x608 |  64.6  |  58.5  | 1864  |  10550 | 52088 |   -   |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53(paper)   | 864x480 |   62.1  |  56.9  | 1608  |    -    |   -   |   -   |   -  |   -   |
| DarkNet53          | 864x480 |   63.2  |  57.7  | 1966  |  10070  | 55081 |   -   |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53          | 576x320 |   59.1  |  56.4  | 1911  |  10923  | 61789  |   -   |[model](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml) |

**Notes:**
 JDE used 8 GPUs for training and mini-batch size as 4 on each GPU, and trained for 30 epoches.

G
George Ni 已提交
116

G
George 已提交
117
### FairMOT Results on MOT-16 Training Set
G
George Ni 已提交
118 119 120 121 122 123 124

| backbone       | input shape | MOTA | IDF1 |  IDS  |    FP   |   FN   |    FPS    | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34(paper)  | 1088x608 |  83.3  |  81.9  |   544  |  3822  |  14095  |     -   |    -   |   -    |
| DLA-34         | 1088x608 |  83.7  |  83.3  |   435  |  3829  |  13764  |     -   | [model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) |


G
George 已提交
125
### FairMOT Results on MOT-16 Test Set
G
George Ni 已提交
126 127 128 129 130 131 132

| backbone       | input shape | MOTA | IDF1 |  IDS  |    FP   |   FN   |    FPS    | download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: | :------: | :----: |:-----: |
| DLA-34(paper)  | 1088x608 |  74.9  |  72.8  |  1074  |    -   |    -   |   25.9   |    -   |   -    |
| DLA-34         | 1088x608 |  74.8  |  74.4  |  930   |  7038  |  37994 |    -     | [model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) |

**Notes:**
133
 FairMOT used 2 GPUs for training and mini-batch size as 6 on each GPU, and trained for 30 epoches.
G
George Ni 已提交
134

G
George Ni 已提交
135

G
George Ni 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
## Feature Tracking Model

### 【Head Tracking](./headtracking21/README.md)

### FairMOT Results on HT-21 Training Set
|    backbone      |  input shape |  MOTA  |  IDF1  |  IDS  |   FP  |   FN   |   FPS   |  download | config |
| :--------------| :------- | :----: | :----: | :---: | :----: | :---: | :------: | :----: |:----: |
| DLA-34         | 1088x608 |  67.2 |  70.4  |   9403  |  124840  |  255007  |     -   | [model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml) |

### FairMOT Results on HT-21 Test Set
|    backbone      |  input shape |  MOTA  |  IDF1  |  IDS  |   FP  |   FN   |   FPS   |  download | config |
| :--------------| :------- | :----: | :----: | :----: | :----: | :----: |:-------: | :----: | :----: |
| DLA-34         | 1088x608 |  58.2  |  61.3  |  13166   |  141872  |  197074 |    -     | [model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_headtracking21.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/headtracking21/fairmot_dla34_30e_1088x608_headtracking21.yml) |

### [Vehicle Tracking](./kitticars/README.md)
### FairMOT Results on KITTI tracking (2D bounding-boxes) Training Set (Car)

|    backbone    | input shape |  MOTA   |   FPS   |  download | config |
| :--------------| :------- | :-----: | :-----: | :------: | :----: |
| DLA-34         | 1088x608 |   67.9  |    -    |[model](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608_kitticars.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/kitticars/fairmot_dla34_30e_1088x608_kitticars.yml) |


G
George Ni 已提交
158 159 160
## Dataset Preparation

### MOT Dataset
G
George Ni 已提交
161
PaddleDetection use the same training data as [JDE](https://github.com/Zhongdao/Towards-Realtime-MOT) and [FairMOT](https://github.com/ifzhang/FairMOT). Please refer to [PrepareMOTDataSet](../../docs/tutorials/PrepareMOTDataSet.md) to download and prepare all the training data including **Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17 and MOT16**. The former six are used as the mixed dataset for training, and MOT16 are used as the evaluation dataset. In addition, you can use **MOT15 and MOT20** for finetune. All pedestrians in these datasets have detection bbox labels and some have ID labels. If you want to use these datasets, please **follow their licenses**.
G
George Ni 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

### Data Format
These several relevant datasets have the following structure:
```
Caltech
   |——————images
   |        └——————00001.jpg
   |        |—————— ...
   |        └——————0000N.jpg
   └——————labels_with_ids
            └——————00001.txt
            |—————— ...
            └——————0000N.txt
MOT17
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train
```
Annotations of these datasets are provided in a unified format. Every image has a corresponding annotation text. Given an image path, the annotation text path can be generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`.

In the annotation text, each line is describing a bounding box and has the following format:
```
[class] [identity] [x_center] [y_center] [width] [height]
```
**Notes:**
- `class` should be `0`. Only single-class multi-object tracking is supported now.
190
- `identity` is an integer from `1` to `num_identities`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation.
191
- `[x_center] [y_center] [width] [height]` are the center coordinates, width and height, note that they are normalized by the width/height of the image, so they are floating point numbers ranging from 0 to 1.
G
George Ni 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

### Dataset Directory

First, follow the command below to download the `image_list.zip` and unzip it in the `dataset/mot` directory:
```
wget https://dataset.bj.bcebos.com/mot/image_lists.zip
```
Then download and unzip each dataset, and the final directory is as follows:
```
dataset/mot
  |——————image_lists
            |——————caltech.10k.val  
            |——————caltech.all  
            |——————caltech.train  
            |——————caltech.val  
            |——————citypersons.train  
            |——————citypersons.val  
            |——————cuhksysu.train  
            |——————cuhksysu.val  
            |——————eth.train  
            |——————mot15.train  
            |——————mot16.train  
            |——————mot17.train  
            |——————mot20.train  
            |——————prw.train  
            |——————prw.val
  |——————Caltech
  |——————Cityscapes
  |——————CUHKSYSU
  |——————ETHZ
  |——————MOT15
  |——————MOT16
  |——————MOT17
  |——————MOT20
  |——————PRW
```

## Getting Start

### 1. Training

233
Training FairMOT on 2 GPUs with following command
G
George Ni 已提交
234 235

```bash
236
python -m paddle.distributed.launch --log_dir=./fairmot_dla34_30e_1088x608/ --gpus 0,1 tools/train.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml
G
George Ni 已提交
237 238 239 240 241 242 243 244 245 246 247
```

### 2. Evaluation

Evaluating the track performance of FairMOT on val dataset in single GPU with following commands:

```bash
# use weights released in PaddleDetection model zoo
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams

# use saved checkpoint in training
G
George Ni 已提交
248
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams
G
George Ni 已提交
249
```
G
George Ni 已提交
250
**Notes:**
G
George Ni 已提交
251
 The default evaluation dataset is MOT-16 Train Set. If you want to change the evaluation dataset, please refer to the following code and modify `configs/datasets/mot.yml`, modify `data_root`
G
George Ni 已提交
252 253 254 255 256 257 258
```
EvalMOTDataset:
  !MOTImageFolder
    dataset_dir: dataset/mot
    data_root: MOT17/images/train
    keep_ori_im: False # set True if save visualization images or video
```
G
George Ni 已提交
259

G
George Ni 已提交
260 261 262 263 264 265
### 3. Inference

Inference a vidoe on single GPU with following command:

```bash
# inference on video and save a video
266
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --frame_rate=20 --save_videos
G
George Ni 已提交
267
```
G
George Ni 已提交
268 269 270 271 272 273 274 275

Inference a image folder on single GPU with following command:

```bash
# inference image folder and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --image_dir={your infer images folder} --save_videos
```

G
George Ni 已提交
276
**Notes:**
277
 Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. `--frame_rate` means the frame rate of the video and the frames extracted per second. It can be set by yourself, default value is -1 indicating the video frame rate read by OpenCV.
G
George Ni 已提交
278 279


280 281 282 283 284 285 286 287 288
### 4. Export model

```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams
```

### 5. Using exported model for python inference

```bash
289
python deploy/python/mot_jde_infer.py --model_dir=output_inference/fairmot_dla34_30e_1088x608 --video_file={your video name}.mp4 --device=GPU --save_mot_txts
290
```
291
**Notes:**
292
The tracking model is used to predict the video, and does not support the prediction of a single image. The visualization video of the tracking results is saved by default. You can add `--save_mot_txts` to save the txt result file, or `--save_images` to save the visualization images.
293

294 295 296 297 298
### 6. Using exported MOT and keypoint model for unite python inference

```bash
python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inference/fairmot_dla34_30e_1088x608/ --keypoint_model_dir=output_inference/higherhrnet_hrnet_w32_512/ --video_file={your video name}.mp4 --device=GPU
```
299
**Notes:**
300
 Keypoint model export tutorial: `configs/keypoint/README.md`.
301

G
George Ni 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
## Citations
```
@inproceedings{Wojke2017simple,
  title={Simple Online and Realtime Tracking with a Deep Association Metric},
  author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
  booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
  year={2017},
  pages={3645--3649},
  organization={IEEE},
  doi={10.1109/ICIP.2017.8296962}
}

@inproceedings{Wojke2018deep,
  title={Deep Cosine Metric Learning for Person Re-identification},
  author={Wojke, Nicolai and Bewley, Alex},
  booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
  year={2018},
  pages={748--756},
  organization={IEEE},
  doi={10.1109/WACV.2018.00087}
}

@article{wang2019towards,
  title={Towards Real-Time Multi-Object Tracking},
  author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin},
  journal={arXiv preprint arXiv:1909.12605},
  year={2019}
}
330 331 332 333 334 335 336

@article{zhang2020fair,
  title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
  author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
  journal={arXiv preprint arXiv:2004.01888},
  year={2020}
}
G
George Ni 已提交
337
```