infer.py 25.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
Guanghua Yu 已提交
15 16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

M
Manuel Garcia 已提交
19 20 21
import os
import sys

G
Guanghua Yu 已提交
22 23 24 25 26
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

27
import argparse
28
import time
29
import yaml
C
channings 已提交
30 31
import ast
from functools import reduce
32

33 34
import cv2
import numpy as np
35
import paddle
36
import paddle.fluid as fluid
G
Guanghua Yu 已提交
37
from preprocess import preprocess, Resize, Normalize, Permute, PadStride
38
from visualize import visualize_box_mask, lmk2out
39

40 41 42 43 44 45 46 47 48 49
# Global dictionary
SUPPORT_MODELS = {
    'YOLO',
    'SSD',
    'RetinaNet',
    'EfficientDet',
    'RCNN',
    'Face',
    'TTF',
    'FCOS',
G
Guanghua Yu 已提交
50
    'SOLOv2',
51 52
}

53

54
class Detector(object):
55 56
    """
    Args:
G
Guanghua Yu 已提交
57 58
        config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of __model__, __params__ and infer_cfg.yml
G
Guanghua Yu 已提交
59
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
G
Guanghua Yu 已提交
60 61
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        threshold (float): threshold to reserve the result for output.
62
        enable_mkldnn (bool): whether use mkldnn with CPU.
63
        enable_mkldnn_bfloat16 (bool): whether use mkldnn bfloat16 with CPU.
64 65 66
    """

    def __init__(self,
G
Guanghua Yu 已提交
67 68
                 config,
                 model_dir,
G
Guanghua Yu 已提交
69
                 device='CPU',
G
Guanghua Yu 已提交
70
                 run_mode='fluid',
71
                 threshold=0.5,
72
                 trt_calib_mode=False,
73 74
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False):
G
Guanghua Yu 已提交
75 76 77
        self.config = config
        if self.config.use_python_inference:
            self.executor, self.program, self.fecth_targets = load_executor(
G
Guanghua Yu 已提交
78
                model_dir, device=device)
79
        else:
G
Guanghua Yu 已提交
80 81 82 83
            self.predictor = load_predictor(
                model_dir,
                run_mode=run_mode,
                min_subgraph_size=self.config.min_subgraph_size,
G
Guanghua Yu 已提交
84
                device=device,
85
                trt_calib_mode=trt_calib_mode,
86 87
                enable_mkldnn=enable_mkldnn,
                enable_mkldnn_bfloat16=enable_mkldnn_bfloat16)
88

G
Guanghua Yu 已提交
89 90 91
    def preprocess(self, im):
        preprocess_ops = []
        for op_info in self.config.preprocess_infos:
92 93
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
G
Guanghua Yu 已提交
94
            if op_type == 'Resize':
95 96
                new_op_info['arch'] = self.config.arch
            preprocess_ops.append(eval(op_type)(**new_op_info))
G
Guanghua Yu 已提交
97 98 99
        im, im_info = preprocess(im, preprocess_ops)
        inputs = create_inputs(im, im_info, self.config.arch)
        return inputs, im_info
100

101
    def postprocess(self, np_boxes, np_masks, np_lmk, im_info, threshold=0.5):
G
Guanghua Yu 已提交
102 103
        # postprocess output of predictor
        results = {}
104 105 106
        if np_lmk is not None:
            results['landmark'] = lmk2out(np_boxes, np_lmk, im_info, threshold)

G
Guanghua Yu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        if self.config.arch in ['SSD', 'Face']:
            w, h = im_info['origin_shape']
            np_boxes[:, 2] *= h
            np_boxes[:, 3] *= w
            np_boxes[:, 4] *= h
            np_boxes[:, 5] *= w
        expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
        np_boxes = np_boxes[expect_boxes, :]
        for box in np_boxes:
            print('class_id:{:d}, confidence:{:.4f},'
                  'left_top:[{:.2f},{:.2f}],'
                  ' right_bottom:[{:.2f},{:.2f}]'.format(
                      int(box[0]), box[1], box[2], box[3], box[4], box[5]))
        results['boxes'] = np_boxes
        if np_masks is not None:
            np_masks = np_masks[expect_boxes, :, :, :]
            results['masks'] = np_masks
        return results
125

G
Guanghua Yu 已提交
126 127 128 129 130 131 132
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        '''
133
        Args:
G
Guanghua Yu 已提交
134 135
            image (str/np.ndarray): path of image/ np.ndarray read by cv2
            threshold (float): threshold of predicted box' score
136
        Returns:
G
Guanghua Yu 已提交
137 138 139 140 141 142
            results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
                            matix element:[class, score, x_min, y_min, x_max, y_max]
                            MaskRCNN's results include 'masks': np.ndarray:
                            shape:[N, class_num, mask_resolution, mask_resolution]
        '''
        inputs, im_info = self.preprocess(image)
143
        np_boxes, np_masks, np_lmk = None, None, None
G
Guanghua Yu 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        if self.config.use_python_inference:
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t1 = time.time()
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
            np_boxes = np.array(outs[0])
            if self.config.mask_resolution is not None:
                np_masks = np.array(outs[1])
162
        else:
G
Guanghua Yu 已提交
163 164 165 166
            input_names = self.predictor.get_input_names()
            for i in range(len(input_names)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
167

G
Guanghua Yu 已提交
168 169 170 171 172 173 174 175 176
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
177

178 179 180 181 182 183 184 185 186 187 188
                if self.config.with_lmk is not None and self.config.with_lmk == True:
                    face_index = self.predictor.get_output_tensor(output_names[
                        1])
                    landmark = self.predictor.get_output_tensor(output_names[2])
                    prior_boxes = self.predictor.get_output_tensor(output_names[
                        3])
                    np_face_index = face_index.copy_to_cpu()
                    np_prior_boxes = prior_boxes.copy_to_cpu()
                    np_landmark = landmark.copy_to_cpu()
                    np_lmk = [np_face_index, np_landmark, np_prior_boxes]

G
Guanghua Yu 已提交
189 190 191 192 193 194 195 196 197 198
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                boxes_tensor = self.predictor.get_output_tensor(output_names[0])
                np_boxes = boxes_tensor.copy_to_cpu()
                if self.config.mask_resolution is not None:
                    masks_tensor = self.predictor.get_output_tensor(
                        output_names[1])
                    np_masks = masks_tensor.copy_to_cpu()
199 200 201 202 203 204 205 206 207 208 209

                if self.config.with_lmk is not None and self.config.with_lmk == True:
                    face_index = self.predictor.get_output_tensor(output_names[
                        1])
                    landmark = self.predictor.get_output_tensor(output_names[2])
                    prior_boxes = self.predictor.get_output_tensor(output_names[
                        3])
                    np_face_index = face_index.copy_to_cpu()
                    np_prior_boxes = prior_boxes.copy_to_cpu()
                    np_landmark = landmark.copy_to_cpu()
                    np_lmk = [np_face_index, np_landmark, np_prior_boxes]
G
Guanghua Yu 已提交
210 211 212
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
213

G
Guanghua Yu 已提交
214 215 216 217 218 219 220 221
        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
                print('[WARNNING] No object detected.')
                results = {'boxes': np.array([])}
            else:
                results = self.postprocess(
222
                    np_boxes, np_masks, np_lmk, im_info, threshold=threshold)
223

G
Guanghua Yu 已提交
224
        return results
225 226


G
Guanghua Yu 已提交
227 228 229 230
class DetectorSOLOv2(Detector):
    def __init__(self,
                 config,
                 model_dir,
G
Guanghua Yu 已提交
231
                 device='CPU',
G
Guanghua Yu 已提交
232
                 run_mode='fluid',
233
                 threshold=0.5,
234
                 trt_calib_mode=False,
235 236
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False):
G
Guanghua Yu 已提交
237 238 239
        super(DetectorSOLOv2, self).__init__(
            config=config,
            model_dir=model_dir,
G
Guanghua Yu 已提交
240
            device=device,
G
Guanghua Yu 已提交
241
            run_mode=run_mode,
242
            threshold=threshold,
243
            trt_calib_mode=trt_calib_mode,
244 245
            enable_mkldn=enable_mkldnn,
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16)
246

G
Guanghua Yu 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    def predict(self,
                image,
                threshold=0.5,
                warmup=0,
                repeats=1,
                run_benchmark=False):
        inputs, im_info = self.preprocess(image)
        np_label, np_score, np_segms = None, None, None
        if self.config.use_python_inference:
            for i in range(warmup):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t1 = time.time()
            for i in range(repeats):
                outs = self.executor.run(self.program,
                                         feed=inputs,
                                         fetch_list=self.fecth_targets,
                                         return_numpy=False)
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))
            np_label, np_score, np_segms = np.array(outs[0]), np.array(outs[
                1]), np.array(outs[2])
        else:
            input_names = self.predictor.get_input_names()
            for i in range(len(input_names)):
                input_tensor = self.predictor.get_input_tensor(input_names[i])
                input_tensor.copy_from_cpu(inputs[input_names[i]])
            for i in range(warmup):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                np_label = self.predictor.get_output_tensor(output_names[
                    0]).copy_to_cpu()
                np_score = self.predictor.get_output_tensor(output_names[
                    1]).copy_to_cpu()
                np_segms = self.predictor.get_output_tensor(output_names[
                    2]).copy_to_cpu()
286

G
Guanghua Yu 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
            t1 = time.time()
            for i in range(repeats):
                self.predictor.zero_copy_run()
                output_names = self.predictor.get_output_names()
                np_label = self.predictor.get_output_tensor(output_names[
                    0]).copy_to_cpu()
                np_score = self.predictor.get_output_tensor(output_names[
                    1]).copy_to_cpu()
                np_segms = self.predictor.get_output_tensor(output_names[
                    2]).copy_to_cpu()
            t2 = time.time()
            ms = (t2 - t1) * 1000.0 / repeats
            print("Inference: {} ms per batch image".format(ms))

        # do not perform postprocess in benchmark mode
        results = []
        if not run_benchmark:
            return dict(segm=np_segms, label=np_label, score=np_score)
        return results
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320


def create_inputs(im, im_info, model_arch='YOLO'):
    """generate input for different model type
    Args:
        im (np.ndarray): image (np.ndarray)
        im_info (dict): info of image
        model_arch (str): model type
    Returns:
        inputs (dict): input of model
    """
    inputs = {}
    inputs['image'] = im
    origin_shape = list(im_info['origin_shape'])
    resize_shape = list(im_info['resize_shape'])
G
Guanghua Yu 已提交
321 322
    pad_shape = list(im_info['pad_shape']) if im_info[
        'pad_shape'] is not None else list(im_info['resize_shape'])
W
wangguanzhong 已提交
323
    scale_x, scale_y = im_info['scale']
324 325 326
    if 'YOLO' in model_arch:
        im_size = np.array([origin_shape]).astype('int32')
        inputs['im_size'] = im_size
327
    elif 'RetinaNet' in model_arch or 'EfficientDet' in model_arch:
W
wangguanzhong 已提交
328
        scale = scale_x
G
Guanghua Yu 已提交
329
        im_info = np.array([pad_shape + [scale]]).astype('float32')
330
        inputs['im_info'] = im_info
331
    elif ('RCNN' in model_arch) or ('FCOS' in model_arch):
W
wangguanzhong 已提交
332
        scale = scale_x
G
Guanghua Yu 已提交
333
        im_info = np.array([pad_shape + [scale]]).astype('float32')
334 335 336
        im_shape = np.array([origin_shape + [1.]]).astype('float32')
        inputs['im_info'] = im_info
        inputs['im_shape'] = im_shape
W
wangguanzhong 已提交
337 338 339
    elif 'TTF' in model_arch:
        scale_factor = np.array([scale_x, scale_y] * 2).astype('float32')
        inputs['scale_factor'] = scale_factor
G
Guanghua Yu 已提交
340 341 342 343
    elif 'SOLOv2' in model_arch:
        scale = scale_x
        im_info = np.array([resize_shape + [scale]]).astype('float32')
        inputs['im_info'] = im_info
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    return inputs


class Config():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.use_python_inference = yml_conf['use_python_inference']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
        self.mask_resolution = None
        if 'mask_resolution' in yml_conf:
            self.mask_resolution = yml_conf['mask_resolution']
367 368 369
        self.with_lmk = None
        if 'with_lmk' in yml_conf:
            self.with_lmk = yml_conf['with_lmk']
C
channings 已提交
370
        self.print_config()
371 372 373 374 375 376

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
377
        for support_model in SUPPORT_MODELS:
378 379
            if support_model in yml_conf['arch']:
                return True
W
wangguanzhong 已提交
380
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
381
            'arch'], SUPPORT_MODELS))
382

C
channings 已提交
383 384 385
    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
386
        print('%s: %s' % ('Use Paddle Executor', self.use_python_inference))
C
channings 已提交
387 388 389 390 391
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')

392 393 394 395

def load_predictor(model_dir,
                   run_mode='fluid',
                   batch_size=1,
G
Guanghua Yu 已提交
396
                   device='CPU',
397
                   min_subgraph_size=3,
398
                   trt_calib_mode=False,
399 400
                   enable_mkldnn=False,
                   enable_mkldnn_bfloat16=False):
401
    """set AnalysisConfig, generate AnalysisPredictor
402 403
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
404
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
405 406
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
407
        enable_mkldnn (bool): Whether use mkldnn with CPU, default is False
408
        enable_mkldnn_bfloat16 (bool): Whether use mkldnn bfloat16 with CPU, default is False
409 410 411
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
412
        ValueError: predict by TensorRT need device == GPU.
413
    """
G
Guanghua Yu 已提交
414
    if device != 'GPU' and not run_mode == 'fluid':
415
        raise ValueError(
G
Guanghua Yu 已提交
416 417
            "Predict by TensorRT mode: {}, expect device==GPU, but device == {}"
            .format(run_mode, device))
418
    precision_map = {
C
channings 已提交
419
        'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
420 421 422 423 424 425
        'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
        'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
    }
    config = fluid.core.AnalysisConfig(
        os.path.join(model_dir, '__model__'),
        os.path.join(model_dir, '__params__'))
G
Guanghua Yu 已提交
426
    if device == 'GPU':
427 428 429 430
        # initial GPU memory(M), device ID
        config.enable_use_gpu(100, 0)
        # optimize graph and fuse op
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
431
    elif device == 'XPU':
432
        config.enable_lite_engine()
G
Guanghua Yu 已提交
433
        config.enable_xpu(10 * 1024 * 1024)
434 435
    else:
        config.disable_gpu()
436 437 438 439
        if enable_mkldnn:
            config.set_mkldnn_cache_capacity(0)
            config.enable_mkldnn()
            config.pass_builder().append_pass("interpolate_mkldnn_pass")
440 441
            if enable_mkldnn_bfloat16:
                config.enable_mkldnn_bfloat16()
442 443
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
444
            workspace_size=1 << 10,
445 446 447 448
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
449
            use_calib_mode=trt_calib_mode)
450 451 452 453

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
454 455
    if (not enable_mkldnn):
        config.enable_memory_optim()
456
    # disable feed, fetch OP, needed by zero_copy_run
457 458 459 460 461
    config.switch_use_feed_fetch_ops(False)
    predictor = fluid.core.create_paddle_predictor(config)
    return predictor


G
Guanghua Yu 已提交
462 463
def load_executor(model_dir, device='CPU'):
    if device == 'GPU':
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=model_dir,
        executor=exe,
        model_filename='__model__',
        params_filename='__params__')
    return exe, program, fetch_targets


def visualize(image_file,
              results,
              labels,
              mask_resolution=14,
G
Guanghua Yu 已提交
480 481
              output_dir='output/',
              threshold=0.5):
482 483
    # visualize the predict result
    im = visualize_box_mask(
G
Guanghua Yu 已提交
484 485 486 487 488
        image_file,
        results,
        labels,
        mask_resolution=mask_resolution,
        threshold=threshold)
489 490 491 492 493 494 495 496
    img_name = os.path.split(image_file)[-1]
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    out_path = os.path.join(output_dir, img_name)
    im.save(out_path, quality=95)
    print("save result to: " + out_path)


G
Guanghua Yu 已提交
497 498 499 500 501
def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')
502 503


G
Guanghua Yu 已提交
504
def predict_image(detector):
C
channings 已提交
505 506
    if FLAGS.run_benchmark:
        detector.predict(
K
Kaipeng Deng 已提交
507 508 509 510 511
            FLAGS.image_file,
            FLAGS.threshold,
            warmup=100,
            repeats=100,
            run_benchmark=True)
C
channings 已提交
512 513 514 515 516 517 518
    else:
        results = detector.predict(FLAGS.image_file, FLAGS.threshold)
        visualize(
            FLAGS.image_file,
            results,
            detector.config.labels,
            mask_resolution=detector.config.mask_resolution,
G
Guanghua Yu 已提交
519 520
            output_dir=FLAGS.output_dir,
            threshold=FLAGS.threshold)
521 522


G
Guanghua Yu 已提交
523
def predict_video(detector, camera_id):
C
channings 已提交
524 525 526 527 528 529
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
530 531 532
    fps = 30
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
M
Manuel Garcia 已提交
533
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
534
    if not os.path.exists(FLAGS.output_dir):
535
        os.makedirs(FLAGS.output_dir)
536 537 538 539 540 541 542 543 544 545 546 547 548 549
    out_path = os.path.join(FLAGS.output_dir, video_name)
    writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    index = 1
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        print('detect frame:%d' % (index))
        index += 1
        results = detector.predict(frame, FLAGS.threshold)
        im = visualize_box_mask(
            frame,
            results,
            detector.config.labels,
550 551
            mask_resolution=detector.config.mask_resolution,
            threshold=FLAGS.threshold)
552 553
        im = np.array(im)
        writer.write(im)
C
channings 已提交
554 555 556 557
        if camera_id != -1:
            cv2.imshow('Mask Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
558 559 560
    writer.release()


G
Guanghua Yu 已提交
561 562 563
def main():
    config = Config(FLAGS.model_dir)
    detector = Detector(
564 565
        config,
        FLAGS.model_dir,
G
Guanghua Yu 已提交
566
        device=FLAGS.device,
567
        run_mode=FLAGS.run_mode,
568
        trt_calib_mode=FLAGS.trt_calib_mode,
569 570
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16)
G
Guanghua Yu 已提交
571 572 573 574
    if config.arch == 'SOLOv2':
        detector = DetectorSOLOv2(
            config,
            FLAGS.model_dir,
G
Guanghua Yu 已提交
575
            device=FLAGS.device,
576
            run_mode=FLAGS.run_mode,
577
            trt_calib_mode=FLAGS.trt_calib_mode,
578 579
            enable_mkldnn=FLAGS.enable_mkldnn,
            enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16)
G
Guanghua Yu 已提交
580 581 582 583 584 585
    # predict from image
    if FLAGS.image_file != '':
        predict_image(detector)
    # predict from video file or camera video stream
    if FLAGS.video_file != '' or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
C
channings 已提交
586 587


588
if __name__ == '__main__':
589 590 591 592
    try:
        paddle.enable_static()
    except:
        pass
593 594 595 596 597 598
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'__model__', '__params__', "
599
              "'infer_cfg.yml', created by tools/export_model.py."),
600 601 602 603 604
        required=True)
    parser.add_argument(
        "--image_file", type=str, default='', help="Path of image file.")
    parser.add_argument(
        "--video_file", type=str, default='', help="Path of video file.")
C
channings 已提交
605 606 607 608 609
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
610 611 612 613
    parser.add_argument(
        "--run_mode",
        type=str,
        default='fluid',
614
        help="mode of running(fluid/trt_fp32/trt_fp16/trt_int8)")
G
Guanghua Yu 已提交
615 616 617 618 619 620
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
621
    parser.add_argument(
C
channings 已提交
622 623 624
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
G
Guanghua Yu 已提交
625 626
        help="Deprecated, please use `--device` to set the device you want to run."
    )
C
channings 已提交
627 628 629 630 631
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
632 633 634 635 636 637 638
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
639 640 641 642 643 644
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
645 646 647 648 649
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
650 651 652 653 654
    parser.add_argument(
        "--enable_mkldnn_bfloat16",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn bfloat16 with CPU.")
655
    FLAGS = parser.parse_args()
C
channings 已提交
656
    print_arguments(FLAGS)
657 658
    if FLAGS.image_file != '' and FLAGS.video_file != '':
        assert "Cannot predict image and video at the same time"
G
Guanghua Yu 已提交
659 660 661 662
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
663
    assert not (FLAGS.enable_mkldnn==False and FLAGS.enable_mkldnn_bfloat16==True),"To turn on mkldnn_bfloat, please set both enable_mkldnn and enable_mkldnn_bfloat16 True" 
G
Guanghua Yu 已提交
664 665

    main()