infer.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob

import numpy as np
from PIL import Image

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.modeling.model_input import create_feed
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    image_name = image_path.split('/')[-1]
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
    images = []

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        images.append(infer_img)
        return images

    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.extend(glob.glob('{}/*.{}'.format(infer_dir, ext)))

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


def main():
    cfg = load_config(FLAGS.config)

    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    if 'test_feed' not in cfg:
        test_feed = create(main_arch + 'TestFeed')
    else:
        test_feed = create(cfg.test_feed)

    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    test_feed.dataset.add_images(test_images)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            _, feed_vars = create_feed(test_feed, use_pyreader=False)
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    reader = create_reader(test_feed)
    feeder = fluid.DataFeeder(place=place, feed_list=feed_vars.values())

    exe.run(startup_prog)
    if cfg.weights:
        checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)

    # parse infer fetches
    extra_keys = []
    if cfg['metric'] == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg['metric'] == 'VOC':
        extra_keys = ['im_id']
    keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)

    # parse dataset category
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
    if cfg.metric == "VOC":
        from ppdet.utils.voc_eval import bbox2out, get_category_info

    anno_file = getattr(test_feed.dataset, 'annotation', None)
    with_background = getattr(test_feed, 'with_background', True)
    use_default_label = getattr(test_feed, 'use_default_label', False)
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    imid2path = reader.imid2path
    for iter_id, data in enumerate(reader()):
        outs = exe.run(infer_prog,
                       feed=feeder.feed(data),
                       fetch_list=values,
                       return_numpy=False)
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        logger.info('Infer iter {}'.format(iter_id))

        bbox_results = None
        mask_results = None
        is_bbox_normalized = True if cfg.metric == 'VOC' else False
        if 'bbox' in res:
            bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
        if 'mask' in res:
            mask_results = mask2out([res], clsid2catid,
                                    model.mask_head.resolution)

        # visualize result
        im_ids = res['im_id'][0]
        for im_id in im_ids:
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
            image = visualize_results(image,
J
jerrywgz 已提交
169 170
                                      int(im_id), catid2name,
                                      FLAGS.draw_threshold, bbox_results,
171 172 173
                                      mask_results, is_bbox_normalized)
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
J
jerrywgz 已提交
174
            image.save(save_name, quality=95)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
J
jerrywgz 已提交
194 195 196 197 198
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
199 200
    FLAGS = parser.parse_args()
    main()