pybind.cc 39.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

P
peizhilin 已提交
24 25 26 27 28 29 30
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif

Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
38
#include "paddle/fluid/framework/op_registry.h"
P
peizhilin 已提交
39
#ifndef _WIN32
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
P
peizhilin 已提交
41
#endif
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
45
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
46
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
47
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
49
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53 54 55
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
56 57
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
58
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
60

61
#include "paddle/fluid/string/to_string.h"
62

D
Dong Zhihong 已提交
63
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
64
#ifndef _WIN32
Y
Yi Wang 已提交
65
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
66
#endif
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
69 70
#endif

M
minqiyang 已提交
71 72
#include "pybind11/stl.h"

73 74 75 76
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
77 78 79
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

80
namespace paddle {
81
namespace pybind {
82
bool IsCompiledWithCUDA() {
83
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
84 85 86 87 88 89
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
90
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
91
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
92 93 94 95 96 97
  return true;
#else
  return false;
#endif
}

98
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
99 100 101
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
102
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
103
  py::module m("core", "C++ core of PaddlePaddle");
104

105 106 107 108
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

109
  BindException(&m);
Y
Yu Yang 已提交
110

111 112 113
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
114
      .def("_get_dims",
115
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
116
      .def("_set_dims",
Q
qijun 已提交
117
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
118
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
119
           })
Y
yuyang18 已提交
120
      .def("_set_layout",
D
dzhwinter 已提交
121 122 123
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
124
      .def("_alloc_float",
D
dzhwinter 已提交
125
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
126
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
127
           })
Y
yuyang18 已提交
128
      .def("_alloc_float",
Y
Yu Yang 已提交
129
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
130
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
131
           })
Y
yuyang18 已提交
132
      .def("_alloc_int",
Y
Yu Yang 已提交
133
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
134
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
135
           })
Y
yuyang18 已提交
136
      .def("_alloc_int",
D
dzhwinter 已提交
137
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
138
             self.mutable_data<int>(place);
Q
qijun 已提交
139
           })
Y
yuyang18 已提交
140
      .def("_alloc_int",
C
chengduoZH 已提交
141 142 143
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
144
      .def("_alloc_float",
C
chengduoZH 已提交
145 146 147
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
148 149
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
150
      .def("set", PyCPUTensorSetFromArray<double>)
151
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
152
      .def("set", PyCPUTensorSetFromArray<bool>)
153
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
154
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
155
      .def("set", PyCPUTensorSetFromArray<int8_t>)
156
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
157 158
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
159
      .def("set", PyCUDATensorSetFromArray<double>)
160
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
161
      .def("set", PyCUDATensorSetFromArray<bool>)
162
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
163
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
164
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
165 166 167 168 169 170
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
171
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
172
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
173
#endif
174
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
175 176 177 178 179
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
180

X
Xin Pan 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
194
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
195
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
196
     columns, hence [5, 2].
X
Xin Pan 已提交
197 198 199

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
200 201
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
225 226
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
227 228 229 230 231 232 233 234 235 236 237 238 239 240
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
241
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
242 243 244 245 246
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
247
      .def("set_lod",
248
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
249
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
250
             LoD new_lod;
251 252
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
253 254
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
255
             self.set_lod(new_lod);
D
dangqingqing 已提交
256
           })
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
282
      // Set above comments of set_lod.
283 284 285 286 287 288 289 290 291 292 293 294 295
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
296 297
      });

Q
qijun 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
311 312 313 314 315 316 317 318 319
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
320
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
321
      .def("rows", [](SelectedRows &self) {
322 323 324 325 326
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
327
      });
Q
qijun 已提交
328

329
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
330 331 332

All parameter, weight, gradient are variables in Paddle.
)DOC")
333
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
334
      .def("set_int",
335 336
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
337 338 339 340 341 342 343
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
344
      .def("get_tensor",
345 346
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
347 348
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
349 350 351
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
352 353 354 355 356
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
357 358 359
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
360
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
361 362 363 364 365
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
366 367 368

#endif
#ifndef _WIN32
Y
Refine  
Yu Yang 已提交
369 370 371 372 373
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
374 375
           py::return_value_policy::reference)
#endif
Y
Yu Yang 已提交
376
      ;  // NOLINT
377

P
peizhilin 已提交
378
#if !defined(_WIN32)
Y
Refine  
Yu Yang 已提交
379
  py::class_<framework::ReaderHolder>(m, "Reader", "")
380
      .def("reset", &framework::ReaderHolder::ResetAll);
P
peizhilin 已提交
381
#endif
Y
Refine  
Yu Yang 已提交
382

S
sneaxiy 已提交
383 384 385 386
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
387 388
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
389
      .def("push",
S
sneaxiy 已提交
390
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
391
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
392
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
393
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
394
           })
S
sneaxiy 已提交
395 396 397 398
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
399

S
sneaxiy 已提交
400
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
401
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
402
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
403
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
404 405 406 407 408 409
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
410 411
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
412
              return holder->GetQueue();
S
sneaxiy 已提交
413
            },
S
sneaxiy 已提交
414
        py::return_value_policy::copy);
S
sneaxiy 已提交
415

416
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
417
      .def("var",
418
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
419
             return self.Var(name);
Y
Yu Yang 已提交
420
           },
421
           py::return_value_policy::reference)
422
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
423
      .def(py::init<>())
424
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
425
           py::return_value_policy::reference)
Y
Yu Yang 已提交
426
      .def("drop_kids", &Scope::DropKids);
427

Y
Yu Yang 已提交
428 429
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
430 431
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
432 433 434 435 436 437 438 439 440 441
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
442 443
    return ret_values;
  });
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
460
  m.def("prune", [](const ProgramDesc &origin,
461
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
462
    ProgramDesc prog_with_targets(origin);
463
    for (const auto &t : targets) {
464
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
465
    }
466
    proto::ProgramDesc pruned_desc;
467
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
468
    return new ProgramDesc(pruned_desc);
469
  });
470 471 472 473
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
474 475 476
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
477 478
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
479
  // clang-format off
Y
Yu Yang 已提交
480
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
481 482
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
483
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
484 485 486
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
487
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
488
                      -> paddle::platform::DeviceContext* {
489
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
490
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
491
#else
Q
qijun 已提交
492
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
493
#endif
C
chengduoZH 已提交
494 495 496 497 498 499 500 501 502 503 504
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
505
// clang-format on
P
peizhilin 已提交
506
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
507 508
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
509
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
510
      .def(py::init<int>())
D
dzhwinter 已提交
511
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
512

513 514 515
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
516

C
chengduoZH 已提交
517 518 519 520
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
521 522 523 524 525 526 527
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
528
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
529
             self = gpu_place;
C
chengduoZH 已提交
530 531
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
532 533
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
534
      });
Y
Yu Yang 已提交
535

Y
Yu Yang 已提交
536 537 538
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
539
                    proto::OpDesc desc;
Y
Yu Yang 已提交
540 541 542 543 544
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
545
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
546
                  })
547
      .def("run",
548
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
549 550 551
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
552
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
553 554 555 556 557
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
558 559 560 561 562 563 564
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
565 566
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
567
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
568
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
569 570 571 572
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
573

F
fengjiayi 已提交
574
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
575
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
576
      .def("close", &Executor::Close)
S
sneaxiy 已提交
577 578 579 580 581
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
582

D
dzhwinter 已提交
583
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
584
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
585 586
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
587

588
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
589
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
590 591 592 593 594 595
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
596

597
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
598
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
599

X
Xin Pan 已提交
600 601
  m.def("_is_program_version_supported", IsProgramVersionSupported);

602 603 604 605 606
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
607

Y
Yu Yang 已提交
608 609 610 611 612 613 614 615 616
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
617
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
618 619
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
636 637 638
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
639
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
640
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
641
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
642

P
peizhilin 已提交
643
#ifndef _WIN32
D
dangqingqing 已提交
644 645 646
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
647
#endif
P
peizhilin 已提交
648
#endif
Y
Yu Yang 已提交
649

P
peizhilin 已提交
650
#ifndef _WIN32
651 652 653 654
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
655
      .value("kAll", platform::ProfilerState::kAll)
656 657 658 659 660 661 662 663 664 665 666 667 668
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
669
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
670
  m.def("reset_profiler", platform::ResetProfiler);
P
peizhilin 已提交
671
#endif
Y
Yu Yang 已提交
672

673 674
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
675 676 677 678 679
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
680 681 682
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
683

X
fix  
Xin Pan 已提交
684 685
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
686 687 688 689 690 691 692 693 694 695 696 697 698 699
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

P
peizhilin 已提交
700
#ifndef _WIN32
Y
yuyang18 已提交
701
  // -- python binds for parallel executor.
Y
yuyang18 已提交
702
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
703 704 705 706
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
707 708 709 710 711 712 713 714 715 716 717
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
718 719 720

        )DOC");

Y
yuyang18 已提交
721
  exec_strategy.def(py::init())
Y
yuyang18 已提交
722 723 724 725 726
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
727 728 729 730 731 732 733 734 735 736
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
737
      .def_property(
738 739 740 741
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
742 743 744 745
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
746 747 748 749 750
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
751 752 753 754
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
755 756 757 758 759 760 761
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
762 763 764 765 766 767 768 769 770 771 772
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
773 774 775 776 777 778
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
779

Y
yuyang18 已提交
780
  exec_strategy.def_property(
Y
yuyang18 已提交
781 782 783 784 785 786 787
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
788 789
      });

C
chengduo 已提交
790 791 792 793
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
794 795 796 797 798 799 800 801 802 803 804
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
805
)DOC");
Y
yuyang18 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
822
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
823
            self.reduce_ = strategy;
C
chengduo 已提交
824 825 826 827 828 829 830
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
831 832 833 834 835
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
836
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
837
            self.gradient_scale_ = strategy;
C
chengduo 已提交
838 839 840 841 842 843
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
844 845 846 847
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
848
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
849
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
850 851 852 853
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
854 855 856
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
857
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
858
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
859 860
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
861 862 863 864 865 866
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
867
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
868 869 870 871 872 873 874 875 876
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
877
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
878 879 880
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
881 882 883 884 885 886
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
887
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
888 889 890 891 892
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
893
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
894
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
895 896 897 898 899
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
900 901 902 903

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
904
                  const std::string &, Scope *, std::vector<Scope *> &,
905 906
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
907 908 909 910
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
911 912 913 914 915
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
916 917 918 919
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
920 921 922 923 924 925
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
926

927
  BindRecordIOWriter(&m);
P
peizhilin 已提交
928
#endif
929
  return m.ptr();
L
Luo Tao 已提交
930
}
931
}  // namespace pybind
932
}  // namespace paddle