layer.py 14.7 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
75 76

import data_type
L
Luo Tao 已提交
77 78
import activation
import attr
L
Luo Tao 已提交
79
import pooling
Q
qiaolongfei 已提交
80

Q
qiaolongfei 已提交
81
__all__ = [
L
Luo Tao 已提交
82 83 84 85 86 87 88 89
    'parse_network', 'data', 'fc', 'conv_shift', 'img_conv', 'img_pool', 'spp',
    'maxout', 'img_cmrnorm', 'batch_norm', 'sum_to_one_norm', 'recurrent',
    'lstmemory', 'grumemory', 'pool', 'last_seq', 'first_seq', 'concat',
    'seq_concat', 'block_expand', 'expand', 'repeat', 'seq_reshape', 'addto',
    'linear_comb', 'interpolation', 'bilinear_interp', 'power', 'scaling',
    'slope_intercept', 'tensor', 'cos_sim', 'trans', 'max_id', 'sampling_id',
    'pad', 'classification_cost', 'cross_entropy_cost',
    'cross_entropy_with_selfnorm_cost', 'regression_cost',
L
Luo Tao 已提交
90
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
L
Luo Tao 已提交
91 92
    'sum_cost', 'huber_cost', 'crf', 'crf_decoding', 'ctc', 'warp_ctc', 'nce',
    'hsigmoid', 'eos'
Q
qiaolongfei 已提交
93 94
]

Q
qiaolongfei 已提交
95

Q
qiaolongfei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
111
class Layer(object):
Q
qiaolongfei 已提交
112 113
    def __init__(self, name, parent_layers):
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
114 115
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
116
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
117 118 119 120 121 122

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
123 124
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
125
                              collections.Sequence):
Q
qiaolongfei 已提交
126
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
127 128
                    context=context)
            else:
Q
qiaolongfei 已提交
129 130 131
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
132 133 134 135 136 137 138 139 140

        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


L
Luo Tao 已提交
141 142
def __convert_to_v2__(method_name, parent_names):
    wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
143

Q
qiaolongfei 已提交
144
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
145 146 147 148
        def __init__(self, name=None, **kwargs):
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
149 150
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
151 152 153 154 155

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
156
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
170
    return V2LayerImpl
Q
qiaolongfei 已提交
171 172


Q
qiaolongfei 已提交
173 174 175 176 177 178 179
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
180
    def __init__(self, name, type, **kwargs):
181
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
182

Q
qiaolongfei 已提交
183
        self.type = type
Q
qiaolongfei 已提交
184 185
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
186 187 188 189 190

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
191
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
192 193
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
194 195
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
196 197 198 199
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


data = DataLayerV2
L
Luo Tao 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel

layer_list = [
    # [V2LayerImpl, V1_method_name, parent_names]
    # fully connected layers
    ['fc', 'fc_layer', ['input']],
    # conv layers
    ['conv_shift', 'conv_shift_layer', ['a', 'b']],
    ['img_conv', 'img_conv_layer', ['input']],
    # image pooling layers
    ['img_pool', 'img_pool_layer', ['input']],
    ['spp', 'spp_layer', ['input']],
    ['maxout', 'maxout_layer', ['input']],
    # norm layers
    ['img_cmrnorm', 'img_cmrnorm_layer', ['input']],
    ['batch_norm', 'batch_norm_layer', ['input']],
    ['sum_to_one_norm', 'sum_to_one_norm_layer', ['input']],
    # recurrent layers
    ['recurrent', 'recurrent_layer', ['input']],
    ['lstmemory', 'lstmemory', ['input']],
    ['grumemory', 'grumemory', ['input']],
    # aggregate layers
    ['pool', 'pooling_layer', ['input']],
    ['last_seq', 'last_seq', ['input']],
    ['first_seq', 'first_seq', ['input']],
    ['concat', 'concat_layer', ['input']],
    ['seq_concat', 'seq_concat_layer', ['a', 'b']],
    # reshaping layers
    ['block_expand', 'block_expand_layer', ['input']],
    ['expand', 'expand_layer', ['input', 'expand_as']],
    ['repeat', 'repeat_layer', ['input']],
    ['rotate', 'rotate_layer', ['input']],
    ['seq_reshape', 'seq_reshape_layer', ['input']],
    # math layers
    ['addto', 'addto_layer', ['input']],
    ['linear_comb', 'linear_comb_layer', ['weights', 'vectors']],
    ['interpolation', 'interpolation_layer', ['input', 'weight']],
    ['bilinear_interp', 'bilinear_interp_layer', ['input']],
    ['power', 'power_layer', ['input', 'weight']],
    ['scaling', 'scaling_layer', ['input', 'weight']],
    ['slope_intercept', 'slope_intercept_layer', ['input']],
    ['tensor', 'tensor_layer', ['a', 'b']],
    ['cos_sim', 'cos_sim', ['a', 'b']],
    ['trans', 'trans_layer', ['input']],
    # sampling layers
    ['max_id', 'maxid_layer', ['input']],
    ['sampling_id', 'sampling_id_layer', ['input']],
    # slicing and joining layers
    ['pad', 'pad_layer', ['input']],
    # cost layers
    [
        'classification_cost', 'classification_cost',
        ['input', 'label', 'weight']
    ],
    ['regression_cost', 'regression_cost', ['input', 'label', 'weight']],
    ['cross_entropy_cost', 'cross_entropy', ['input', 'label']],
    [
        'cross_entropy_with_selfnorm_cost', 'cross_entropy_with_selfnorm',
        ['input', 'label']
    ],
    [
        'multi_binary_label_cross_entropy_cost',
        'multi_binary_label_cross_entropy', ['input', 'label']
    ],
    ['rank_cost', 'rank_cost', ['left', 'right', 'label', 'weight']],
    ['lambda_cost', 'lambda_cost', ['input', 'score']],
    ['sum_cost', 'sum_cost', ['input']],
    ['huber_cost', 'huber_cost', ['input', 'label']],
    ['crf', 'crf_layer', ['input', 'label']],
    ['crf_decoding', 'crf_decoding_layer', ['input']],
    ['ctc', 'ctc_layer', ['input', 'label']],
    ['warp_ctc', 'warp_ctc_layer', ['input', 'label']],
    ['nce', 'nce_layer', ['input', 'label']],
    ['hsigmoid', 'hsigmoid', ['input', 'label']],
    # check layers
    ['eos', 'eos_layer', ['input']]
]
for l in layer_list:
    globals()[l[0]] = __convert_to_v2__(l[1], l[2])
Q
qiaolongfei 已提交
280 281

if __name__ == '__main__':
L
Luo Tao 已提交
282
    pixel = data(name='pixel', type=data_type.dense_vector(128))
283
    label = data(name='label', type=data_type.integer_value(10))
L
Luo Tao 已提交
284
    weight = data(name='weight', type=data_type.dense_vector(10))
L
Luo Tao 已提交
285
    word = data(name='word', type=data_type.integer_value(12))
L
Luo Tao 已提交
286 287
    score = data(name='score', type=data_type.dense_vector(1))

L
Luo Tao 已提交
288 289 290 291 292
    hidden = fc(input=pixel,
                size=100,
                act=activation.Sigmoid(),
                param_attr=attr.Param(name='hidden'))
    inference = fc(input=hidden, size=10, act=activation.Softmax())
L
Luo Tao 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    print parse_network(inference)

    # test conv layers
    conv1 = conv_shift(a=pixel, b=score)
    conv2 = img_conv(
        input=pixel,
        filter_size=1,
        filter_size_y=1,
        num_channels=8,
        num_filters=16,
        act=activation.Linear())
    print parse_network(conv1, conv2)

    # test image pooling layers
    maxpool = img_pool(
        input=conv2,
        pool_size=2,
        num_channels=16,
        padding=1,
        pool_type=pooling.Max())
    spp = spp(input=conv2,
              pyramid_height=2,
              num_channels=16,
              pool_type=pooling.Max())
    maxout = maxout(input=conv2, num_channels=16, groups=4)
    print parse_network(maxpool, spp, maxout)

    # test norm layers
    norm1 = img_cmrnorm(input=maxpool, size=5)
    norm2 = batch_norm(input=maxpool)
    norm3 = sum_to_one_norm(input=maxpool)
    print parse_network(norm1, norm2, norm3)

    # test recurrent layers
    recurrent = recurrent(input=word)
    lstm = lstmemory(input=word)
    gru = grumemory(input=word)
    print parse_network(recurrent, lstm, gru)

    # test aggregate layers
    pool = pool(
        input=pixel,
        pooling_type=pooling.Avg(),
        agg_level=AggregateLevel.EACH_SEQUENCE)
    last_seq = last_seq(input=pixel)
    first_seq = first_seq(input=pixel)
    concat = concat(input=[last_seq, first_seq])
    seq_concat = seq_concat(a=last_seq, b=first_seq)
    print parse_network(pool, last_seq, first_seq, concat, seq_concat)

    # test reshaping layers
    block_expand = block_expand(
        input=maxout, num_channels=4, stride_x=1, block_x=1)
    expand = expand(
        input=last_seq, expand_as=pixel, expand_level=ExpandLevel.FROM_TIMESTEP)
    repeat = repeat(input=last_seq, num_repeats=4)
    reshape = seq_reshape(input=last_seq, reshape_size=4)
    rotate = rotate(input=pixel, height=16, width=49)
    print parse_network(block_expand, expand, repeat, reshape, rotate)

    # test math layers
    addto = addto(input=[last_seq, first_seq])
    linear_comb = linear_comb(weights=weight, vectors=hidden, size=10)
    interpolation = interpolation(input=[hidden, hidden], weight=score)
    bilinear = bilinear_interp(input=conv2, out_size_x=4, out_size_y=4)
    power = power(input=conv1, weight=score)
    scaling = scaling(input=conv1, weight=score)
    slope = slope_intercept(input=conv1)
    tensor = tensor(a=last_seq, b=first_seq, size=1000)
    cos_sim = cos_sim(a=last_seq, b=first_seq)
    trans = trans(input=tensor)
    print parse_network(addto, linear_comb, interpolation, bilinear, power,
                        scaling, slope, tensor, cos_sim, trans)

    # test sampling layers
Q
qiaolongfei 已提交
368
    maxid = max_id(input=inference)
L
Luo Tao 已提交
369 370 371 372 373 374 375 376
    sampling_id = sampling_id(input=inference)
    print parse_network(maxid, sampling_id)

    # test slicing and joining layers
    pad = pad(input=maxpool, pad_c=[2, 3], pad_h=[1, 2], pad_w=[3, 1])
    print parse_network(pad)

    # test cost layers
Q
qiaolongfei 已提交
377
    cost1 = classification_cost(input=inference, label=label)
L
Luo Tao 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390
    cost2 = classification_cost(input=inference, label=label, weight=weight)
    cost3 = cross_entropy_cost(input=inference, label=label)
    cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
    cost5 = regression_cost(input=inference, label=label)
    cost6 = regression_cost(input=inference, label=label, weight=weight)
    cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
    cost8 = rank_cost(left=score, right=score, label=score)
    cost9 = lambda_cost(input=inference, score=score)
    cost10 = sum_cost(input=inference)
    cost11 = huber_cost(input=score, label=label)
    print parse_network(cost3, cost4)
    print parse_network(cost5, cost6)
    print parse_network(cost7, cost8, cost9, cost10, cost11)
L
Luo Tao 已提交
391 392 393 394 395 396 397 398 399 400 401 402

    crf = crf(input=inference, label=label)
    crf_decoding = crf_decoding(input=inference, size=3)
    ctc = ctc(input=inference, label=label)
    warp_ctc = warp_ctc(input=pixel, label=label)
    nce = nce(input=inference, label=label, num_classes=3)
    hsigmoid = hsigmoid(input=inference, label=label, num_classes=3)
    print parse_network(crf, crf_decoding, ctc, warp_ctc, nce, hsigmoid)

    # test check layers
    eos = eos(input=maxid, eos_id=5)
    print parse_network(eos)