mot.py 12.8 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import numpy as np
from collections import OrderedDict
G
George Ni 已提交
19 20 21 22 23
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
from .dataset import DetDataset, _make_dataset, _is_valid_file
G
George Ni 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register
@serializable
class MOTDataSet(DetDataset):
    """
    Load dataset with MOT format.
    Args:
        dataset_dir (str): root directory for dataset.
        image_lists (str|list): mot data image lists, muiti-source mot dataset.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
G
George Ni 已提交
39

G
George Ni 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    Notes:
        MOT datasets root directory following this:
            dataset/mot
            |——————image_lists
            |        |——————caltech.train  
            |        |——————caltech.val   
            |        |——————mot16.train  
            |        |——————mot17.train  
            |        ......
            |——————Caltech
            |——————MOT17
            |——————......

        All the MOT datasets have the following structure:
            Caltech
            |——————images
            |        └——————00001.jpg
            |        |—————— ...
            |        └——————0000N.jpg
            └——————labels_with_ids
                        └——————00001.txt
                        |—————— ...
                        └——————0000N.txt
            or

            MOT17
            |——————images
            |        └——————train
            |        └——————test
            └——————labels_with_ids
                        └——————train
    """

    def __init__(self,
                 dataset_dir=None,
                 image_lists=[],
                 data_fields=['image'],
G
George Ni 已提交
77
                 sample_num=-1):
G
George Ni 已提交
78 79 80 81 82 83 84 85
        super(MOTDataSet, self).__init__(
            dataset_dir=dataset_dir,
            data_fields=data_fields,
            sample_num=sample_num)
        self.dataset_dir = dataset_dir
        self.image_lists = image_lists
        if isinstance(self.image_lists, str):
            self.image_lists = [self.image_lists]
G
George Ni 已提交
86 87
        self.roidbs = None
        self.cname2cid = None
G
George Ni 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

    def get_anno(self):
        if self.image_lists == []:
            return
        # only used to get categories and metric
        return os.path.join(self.dataset_dir, 'image_lists',
                            self.image_lists[0])

    def parse_dataset(self):
        self.img_files = OrderedDict()
        self.img_start_index = OrderedDict()
        self.label_files = OrderedDict()
        self.tid_num = OrderedDict()
        self.tid_start_index = OrderedDict()

        img_index = 0
        for data_name in self.image_lists:
            # check every data image list
            image_lists_dir = os.path.join(self.dataset_dir, 'image_lists')
            assert os.path.isdir(image_lists_dir), \
                "The {} is not a directory.".format(image_lists_dir)

            list_path = os.path.join(image_lists_dir, data_name)
            assert os.path.exists(list_path), \
                "The list path {} does not exist.".format(list_path)

            # record img_files, filter out empty ones
            with open(list_path, 'r') as file:
                self.img_files[data_name] = file.readlines()
                self.img_files[data_name] = [
                    os.path.join(self.dataset_dir, x.strip())
                    for x in self.img_files[data_name]
                ]
                self.img_files[data_name] = list(
                    filter(lambda x: len(x) > 0, self.img_files[data_name]))

                self.img_start_index[data_name] = img_index
                img_index += len(self.img_files[data_name])

            # record label_files
            self.label_files[data_name] = [
                x.replace('images', 'labels_with_ids').replace(
                    '.png', '.txt').replace('.jpg', '.txt')
                for x in self.img_files[data_name]
            ]

        for data_name, label_paths in self.label_files.items():
            max_index = -1
            for lp in label_paths:
                lb = np.loadtxt(lp)
                if len(lb) < 1:
                    continue
                if len(lb.shape) < 2:
                    img_max = lb[1]
                else:
                    img_max = np.max(lb[:, 1])
                if img_max > max_index:
                    max_index = img_max
            self.tid_num[data_name] = int(max_index + 1)

        last_index = 0
        for i, (k, v) in enumerate(self.tid_num.items()):
            self.tid_start_index[k] = last_index
            last_index += v

        self.total_identities = int(last_index + 1)
        self.num_imgs_each_data = [len(x) for x in self.img_files.values()]
        self.total_imgs = sum(self.num_imgs_each_data)

        logger.info('=' * 80)
        logger.info('MOT dataset summary: ')
        logger.info(self.tid_num)
        logger.info('total images: {}'.format(self.total_imgs))
        logger.info('image start index: {}'.format(self.img_start_index))
        logger.info('total identities: {}'.format(self.total_identities))
        logger.info('identity start index: {}'.format(self.tid_start_index))
        logger.info('=' * 80)

        records = []
G
George Ni 已提交
167
        cname2cid = mot_label()
G
George Ni 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

        for img_index in range(self.total_imgs):
            for i, (k, v) in enumerate(self.img_start_index.items()):
                if img_index >= v:
                    data_name = list(self.label_files.keys())[i]
                    start_index = v
            img_file = self.img_files[data_name][img_index - start_index]
            lbl_file = self.label_files[data_name][img_index - start_index]

            if not os.path.exists(img_file):
                logger.warn('Illegal image file: {}, and it will be ignored'.
                            format(img_file))
                continue
            if not os.path.isfile(lbl_file):
                logger.warn('Illegal label file: {}, and it will be ignored'.
                            format(lbl_file))
                continue

            labels = np.loadtxt(lbl_file, dtype=np.float32).reshape(-1, 6)
            # each row in labels (N, 6) is [gt_class, gt_identity, cx, cy, w, h]

            cx, cy = labels[:, 2], labels[:, 3]
            w, h = labels[:, 4], labels[:, 5]
            gt_bbox = np.stack((cx, cy, w, h)).T.astype('float32')
            gt_class = labels[:, 0:1].astype('int32')
            gt_score = np.ones((len(labels), 1)).astype('float32')
            gt_ide = labels[:, 1:2].astype('int32')
195 196 197
            for i, _ in enumerate(gt_ide):
                if gt_ide[i] > -1:
                    gt_ide[i] += self.tid_start_index[data_name]
G
George Ni 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

            mot_rec = {
                'im_file': img_file,
                'im_id': img_index,
            } if 'image' in self.data_fields else {}

            gt_rec = {
                'gt_class': gt_class,
                'gt_score': gt_score,
                'gt_bbox': gt_bbox,
                'gt_ide': gt_ide,
            }

            for k, v in gt_rec.items():
                if k in self.data_fields:
                    mot_rec[k] = v

            records.append(mot_rec)
            if self.sample_num > 0 and img_index >= self.sample_num:
                break
        assert len(records) > 0, 'not found any mot record in %s' % (
            self.image_lists)
        self.roidbs, self.cname2cid = records, cname2cid


def mot_label():
    labels_map = {'person': 0}
    return labels_map


G
George Ni 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
@register
@serializable
class MOTImageFolder(DetDataset):
    def __init__(self,
                 task,
                 dataset_dir=None,
                 data_root=None,
                 image_dir=None,
                 sample_num=-1,
                 keep_ori_im=False,
                 **kwargs):
        super(MOTImageFolder, self).__init__(
            dataset_dir, image_dir, sample_num=sample_num)
        self.task = task
        self.data_root = data_root
        self.keep_ori_im = keep_ori_im
        self._imid2path = {}
        self.roidbs = None

    def check_or_download_dataset(self):
        return

    def parse_dataset(self, ):
        if not self.roidbs:
            self.roidbs = self._load_images()

    def _parse(self):
        image_dir = self.image_dir
        if not isinstance(image_dir, Sequence):
            image_dir = [image_dir]
        images = []
        for im_dir in image_dir:
            if os.path.isdir(im_dir):
                im_dir = os.path.join(self.dataset_dir, im_dir)
                images.extend(_make_dataset(im_dir))
            elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
                images.append(im_dir)
        return images

    def _load_images(self):
        images = self._parse()
        ct = 0
        records = []
        for image in images:
            assert image != '' and os.path.isfile(image), \
                    "Image {} not found".format(image)
            if self.sample_num > 0 and ct >= self.sample_num:
                break
            rec = {'im_id': np.array([ct]), 'im_file': image}
            if self.keep_ori_im:
                rec.update({'keep_ori_im': 1})
            self._imid2path[ct] = image
            ct += 1
            records.append(rec)
        assert len(records) > 0, "No image file found"
        return records

    def get_imid2path(self):
        return self._imid2path

    def set_images(self, images):
        self.image_dir = images
        self.roidbs = self._load_images()


G
George Ni 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')):
    return f.lower().endswith(extensions)


@register
@serializable
class MOTVideoDataset(DetDataset):
    """
    Load MOT dataset with MOT format from video for inference.
    Args:
        video_file (str): path of the video file
        dataset_dir (str): root directory for dataset.
        keep_ori_im (bool): whether to keep original image, default False. 
            Set True when used during MOT model inference while saving
            images or video, or used in DeepSORT.
    """

    def __init__(self,
                 video_file='',
                 dataset_dir=None,
                 keep_ori_im=False,
                 **kwargs):
        super(MOTVideoDataset, self).__init__(dataset_dir=dataset_dir)
        self.video_file = video_file
        self.dataset_dir = dataset_dir
        self.keep_ori_im = keep_ori_im
        self.roidbs = None

    def parse_dataset(self, ):
        if not self.roidbs:
            self.roidbs = self._load_video_images()

    def _load_video_images(self):
        self.cap = cv2.VideoCapture(self.video_file)
        self.vn = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
F
FlyingQianMM 已提交
328
        self.frame_rate = int(round(self.cap.get(cv2.CAP_PROP_FPS)))
G
George Ni 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        logger.info('Length of the video: {:d} frames'.format(self.vn))
        res = True
        ct = 0
        records = []
        while res:
            res, img = self.cap.read()
            image = np.ascontiguousarray(img, dtype=np.float32)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            im_shape = image.shape
            rec = {
                'im_id': np.array([ct]),
                'image': image,
                'h': im_shape[0],
                'w': im_shape[1],
                'im_shape': np.array(
                    im_shape[:2], dtype=np.float32),
                'scale_factor': np.array(
                    [1., 1.], dtype=np.float32),
            }
            if self.keep_ori_im:
                rec.update({'ori_image': image})
            ct += 1
            records.append(rec)
        records = records[:-1]
        assert len(records) > 0, "No image file found"
        return records

    def set_video(self, video_file):
        self.video_file = video_file
        assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \
                "wrong or unsupported file format: {}".format(self.video_file)
        self.roidbs = self._load_video_images()