mot_preprocess.py 2.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import numpy as np


class LetterBoxResize(object):
    def __init__(self, target_size):
        """
        Resize image to target size, convert normalized xywh to pixel xyxy
        format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]).
        Args:
            target_size (int|list): image target size.
        """
        super(LetterBoxResize, self).__init__()
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size

    def letterbox(self, img, height, width, color=(127.5, 127.5, 127.5)):
        # letterbox: resize a rectangular image to a padded rectangular
        shape = img.shape[:2]  # [height, width]
        ratio_h = float(height) / shape[0]
        ratio_w = float(width) / shape[1]
        ratio = min(ratio_h, ratio_w)
        new_shape = (round(shape[1] * ratio),
                     round(shape[0] * ratio))  # [width, height]
        padw = (width - new_shape[0]) / 2
        padh = (height - new_shape[1]) / 2
        top, bottom = round(padh - 0.1), round(padh + 0.1)
        left, right = round(padw - 0.1), round(padw + 0.1)

        img = cv2.resize(
            img, new_shape, interpolation=cv2.INTER_AREA)  # resized, no border
        img = cv2.copyMakeBorder(
            img, top, bottom, left, right, cv2.BORDER_CONSTANT,
            value=color)  # padded rectangular
        return img, ratio, padw, padh

    def __call__(self, im, im_info):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
            im_info (dict): info of image
        Returns:
            im (np.ndarray):  processed image (np.ndarray)
            im_info (dict): info of processed image
        """
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        height, width = self.target_size
        h, w = im.shape[:2]
        im, ratio, padw, padh = self.letterbox(im, height=height, width=width)

        new_shape = [round(h * ratio), round(w * ratio)]
        im_info['im_shape'] = np.array(new_shape, dtype=np.float32)
        im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32)
        return im, im_info