sigmoid_op.h 1.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include "paddle/operators/type_alias.h"
18 19 20 21

namespace paddle {
namespace operators {

Q
qijun 已提交
22
template <typename Place, typename T>
23
class SigmoidKernel : public OpKernel {
24
public:
25 26 27
  void Compute(const ExecutionContext& context) const override {
    auto input = context.Input<Tensor>(0);
    auto output = context.Output<Tensor>(0);
Q
qijun 已提交
28 29
    output->mutable_data<T>(context.GetPlace());

D
dangqingqing 已提交
30
    // The clipping is used in Paddle's raw implenmention
L
liaogang 已提交
31 32
    auto X = EigenVector<T>::Flatten(*input);
    auto Y = EigenVector<T>::Flatten(*output);
L
liaogang 已提交
33
    auto place = context.GetEigenDevice<Place>();
L
liaogang 已提交
34 35

    Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp());
36 37
  }
};
38 39 40 41 42

template <typename Place, typename T>
class SigmoidGradKernel : public OpKernel {
public:
  void Compute(const ExecutionContext& context) const override {
D
dangqingqing 已提交
43
    // a helper funciton is needed fo the name x@GRAD
44 45 46 47 48 49 50 51 52 53 54 55 56
    auto y_t = context.Input<Tensor>("Y");
    auto dy_t = context.Input<Tensor>("Y@GRAD");
    auto dx_t = context.Output<Tensor>("X@GRAD");

    dx_t->mutable_data<T>(context.GetPlace());

    auto dx = EigenVector<T>::Flatten(*dx_t);
    auto y = EigenVector<T>::Flatten(*y_t);
    auto dy = EigenVector<T>::Flatten(*dy_t);
    dx.device(*(context.GetEigenDevice<Place>())) = dy * y * (1. - y);
  }
};

57 58
}  // namespace operators
}  // namespace paddle