blazenet.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec

__all__ = ['BlazeNet']


30 31 32 33
def hard_swish(x):
    return x * F.relu6(x + 3) / 6.


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 num_groups=1,
                 act='relu',
                 conv_lr=0.1,
                 conv_decay=0.,
                 norm_decay=0.,
                 norm_type='bn',
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.act = act
        self._conv = nn.Conv2D(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            weight_attr=ParamAttr(
                learning_rate=conv_lr,
                initializer=KaimingNormal(),
                name=name + "_weights"),
            bias_attr=False)

        param_attr = ParamAttr(name=name + "_bn_scale")
        bias_attr = ParamAttr(name=name + "_bn_offset")
        if norm_type == 'sync_bn':
            self._batch_norm = nn.SyncBatchNorm(
                out_channels, weight_attr=param_attr, bias_attr=bias_attr)
        else:
            self._batch_norm = nn.BatchNorm(
                out_channels,
                act=None,
                param_attr=param_attr,
                bias_attr=bias_attr,
                use_global_stats=False,
                moving_mean_name=name + '_bn_mean',
                moving_variance_name=name + '_bn_variance')

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        if self.act == "relu":
            x = F.relu(x)
        elif self.act == "relu6":
            x = F.relu6(x)
85 86 87 88
        elif self.act == 'leaky':
            x = F.leaky_relu(x)
        elif self.act == 'hard_swish':
            x = hard_swish(x)
89 90 91 92 93 94 95 96 97 98 99
        return x


class BlazeBlock(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels1,
                 out_channels2,
                 double_channels=None,
                 stride=1,
                 use_5x5kernel=True,
100
                 act='relu',
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                 name=None):
        super(BlazeBlock, self).__init__()
        assert stride in [1, 2]
        self.use_pool = not stride == 1
        self.use_double_block = double_channels is not None
        self.conv_dw = []
        if use_5x5kernel:
            self.conv_dw.append(
                self.add_sublayer(
                    name + "1_dw",
                    ConvBNLayer(
                        in_channels=in_channels,
                        out_channels=out_channels1,
                        kernel_size=5,
                        stride=stride,
                        padding=2,
                        num_groups=out_channels1,
                        name=name + "1_dw")))
        else:
            self.conv_dw.append(
                self.add_sublayer(
                    name + "1_dw_1",
                    ConvBNLayer(
                        in_channels=in_channels,
                        out_channels=out_channels1,
                        kernel_size=3,
                        stride=1,
                        padding=1,
                        num_groups=out_channels1,
                        name=name + "1_dw_1")))
            self.conv_dw.append(
                self.add_sublayer(
                    name + "1_dw_2",
                    ConvBNLayer(
                        in_channels=out_channels1,
                        out_channels=out_channels1,
                        kernel_size=3,
                        stride=stride,
                        padding=1,
                        num_groups=out_channels1,
                        name=name + "1_dw_2")))
142
        self.act = act if self.use_double_block else None
143 144 145 146 147 148
        self.conv_pw = ConvBNLayer(
            in_channels=out_channels1,
            out_channels=out_channels2,
            kernel_size=1,
            stride=1,
            padding=0,
149
            act=self.act,
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
            name=name + "1_sep")
        if self.use_double_block:
            self.conv_dw2 = []
            if use_5x5kernel:
                self.conv_dw2.append(
                    self.add_sublayer(
                        name + "2_dw",
                        ConvBNLayer(
                            in_channels=out_channels2,
                            out_channels=out_channels2,
                            kernel_size=5,
                            stride=1,
                            padding=2,
                            num_groups=out_channels2,
                            name=name + "2_dw")))
            else:
                self.conv_dw2.append(
                    self.add_sublayer(
                        name + "2_dw_1",
                        ConvBNLayer(
                            in_channels=out_channels2,
                            out_channels=out_channels2,
                            kernel_size=3,
                            stride=1,
                            padding=1,
                            num_groups=out_channels2,
                            name=name + "1_dw_1")))
                self.conv_dw2.append(
                    self.add_sublayer(
                        name + "2_dw_2",
                        ConvBNLayer(
                            in_channels=out_channels2,
                            out_channels=out_channels2,
                            kernel_size=3,
                            stride=1,
                            padding=1,
                            num_groups=out_channels2,
                            name=name + "2_dw_2")))
            self.conv_pw2 = ConvBNLayer(
                in_channels=out_channels2,
                out_channels=double_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                name=name + "2_sep")
        # shortcut
        if self.use_pool:
            shortcut_channel = double_channels or out_channels2
            self._shortcut = []
            self._shortcut.append(
                self.add_sublayer(
                    name + '_shortcut_pool',
                    nn.MaxPool2D(
                        kernel_size=stride, stride=stride, ceil_mode=True)))
            self._shortcut.append(
                self.add_sublayer(
                    name + '_shortcut_conv',
                    ConvBNLayer(
                        in_channels=in_channels,
                        out_channels=shortcut_channel,
                        kernel_size=1,
                        stride=1,
                        padding=0,
                        name="shortcut" + name)))

    def forward(self, x):
        y = x
        for conv_dw_block in self.conv_dw:
            y = conv_dw_block(y)
        y = self.conv_pw(y)
        if self.use_double_block:
            for conv_dw2_block in self.conv_dw2:
                y = conv_dw2_block(y)
            y = self.conv_pw2(y)
        if self.use_pool:
            for shortcut in self._shortcut:
                x = shortcut(x)
        return F.relu(paddle.add(x, y))


@register
@serializable
class BlazeNet(nn.Layer):
    """
    BlazeFace, see https://arxiv.org/abs/1907.05047

    Args:
        blaze_filters (list): number of filter for each blaze block.
        double_blaze_filters (list): number of filter for each double_blaze block.
        use_5x5kernel (bool): whether or not filter size is 5x5 in depth-wise conv.
    """

    def __init__(
            self,
            blaze_filters=[[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]],
            double_blaze_filters=[[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
                                  [96, 24, 96, 2], [96, 24, 96], [96, 24, 96]],
247 248
            use_5x5kernel=True,
            act=None):
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        super(BlazeNet, self).__init__()
        conv1_num_filters = blaze_filters[0][0]
        self.conv1 = ConvBNLayer(
            in_channels=3,
            out_channels=conv1_num_filters,
            kernel_size=3,
            stride=2,
            padding=1,
            name="conv1")
        in_channels = conv1_num_filters
        self.blaze_block = []
        self._out_channels = []
        for k, v in enumerate(blaze_filters):
            assert len(v) in [2, 3], \
                "blaze_filters {} not in [2, 3]"
            if len(v) == 2:
                self.blaze_block.append(
                    self.add_sublayer(
                        'blaze_{}'.format(k),
                        BlazeBlock(
                            in_channels,
                            v[0],
                            v[1],
                            use_5x5kernel=use_5x5kernel,
273
                            act=act,
274 275 276 277 278 279 280 281 282 283 284
                            name='blaze_{}'.format(k))))
            elif len(v) == 3:
                self.blaze_block.append(
                    self.add_sublayer(
                        'blaze_{}'.format(k),
                        BlazeBlock(
                            in_channels,
                            v[0],
                            v[1],
                            stride=v[2],
                            use_5x5kernel=use_5x5kernel,
285
                            act=act,
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                            name='blaze_{}'.format(k))))
            in_channels = v[1]

        for k, v in enumerate(double_blaze_filters):
            assert len(v) in [3, 4], \
                "blaze_filters {} not in [3, 4]"
            if len(v) == 3:
                self.blaze_block.append(
                    self.add_sublayer(
                        'double_blaze_{}'.format(k),
                        BlazeBlock(
                            in_channels,
                            v[0],
                            v[1],
                            double_channels=v[2],
                            use_5x5kernel=use_5x5kernel,
302
                            act=act,
303 304 305 306 307 308 309 310 311 312 313 314
                            name='double_blaze_{}'.format(k))))
            elif len(v) == 4:
                self.blaze_block.append(
                    self.add_sublayer(
                        'double_blaze_{}'.format(k),
                        BlazeBlock(
                            in_channels,
                            v[0],
                            v[1],
                            double_channels=v[2],
                            stride=v[3],
                            use_5x5kernel=use_5x5kernel,
315
                            act=act,
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
                            name='double_blaze_{}'.format(k))))
            in_channels = v[2]
            self._out_channels.append(in_channels)

    def forward(self, inputs):
        outs = []
        y = self.conv1(inputs['image'])
        for block in self.blaze_block:
            y = block(y)
            outs.append(y)
        return [outs[-4], outs[-1]]

    @property
    def out_shape(self):
        return [
            ShapeSpec(channels=c)
            for c in [self._out_channels[-4], self._out_channels[-1]]
        ]