jde_predictor.h 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <ctime>
18
#include <memory>
19
#include <string>
20
#include <utility>
21
#include <vector>
22 23 24

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
25
#include <opencv2/imgproc/imgproc.hpp>
26

27
#include "paddle_inference_api.h"  // NOLINT
28 29

#include "include/config_parser.h"
30
#include "include/preprocess_op.h"
31 32
#include "include/utils.h"

33
using namespace paddle_infer;  // NOLINT
34 35 36 37 38

namespace PaddleDetection {

class JDEPredictor {
 public:
39 40 41 42 43 44 45 46 47
  explicit JDEPredictor(const std::string& device = "CPU",
                        const std::string& model_dir = "",
                        const double threshold = -1.,
                        const std::string& run_mode = "fluid",
                        const int gpu_id = 0,
                        const bool use_mkldnn = false,
                        const int cpu_threads = 1,
                        bool trt_calib_mode = false,
                        const int min_box_area = 200) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    this->device_ = device;
    this->gpu_id_ = gpu_id;
    this->use_mkldnn_ = use_mkldnn;
    this->cpu_math_library_num_threads_ = cpu_threads;
    this->trt_calib_mode_ = trt_calib_mode;
    this->min_box_area_ = min_box_area;

    config_.load_config(model_dir);
    this->min_subgraph_size_ = config_.min_subgraph_size_;
    preprocessor_.Init(config_.preprocess_info_);
    LoadModel(model_dir, run_mode);
    this->conf_thresh_ = config_.conf_thresh_;
  }

  // Load Paddle inference model
63 64
  void LoadModel(const std::string& model_dir,
                 const std::string& run_mode = "fluid");
65 66 67

  // Run predictor
  void Predict(const std::vector<cv::Mat> imgs,
68 69 70
               const double threshold = 0.5,
               MOTResult* result = nullptr,
               std::vector<double>* times = nullptr);
71 72 73 74 75 76 77 78 79 80 81 82 83

 private:
  std::string device_ = "CPU";
  float threhold = 0.5;
  int gpu_id_ = 0;
  bool use_mkldnn_ = false;
  int cpu_math_library_num_threads_ = 1;
  int min_subgraph_size_ = 3;
  bool trt_calib_mode_ = false;

  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
84
  void Postprocess(const cv::Mat dets, const cv::Mat emb, MOTResult* result);
85 86 87 88 89 90 91 92 93 94 95 96 97

  std::shared_ptr<Predictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> bbox_data_;
  std::vector<float> emb_data_;
  double threshold_;
  ConfigPaser config_;
  float min_box_area_;
  float conf_thresh_;
};

}  // namespace PaddleDetection