mtmct.py 11.3 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import motmetrics as mm
from pptracking.python.mot.visualize import plot_tracking
import os
import re
import cv2
import gc
import numpy as np
from sklearn import preprocessing
from sklearn.cluster import AgglomerativeClustering
import pandas as pd
from tqdm import tqdm
from functools import reduce
import warnings
warnings.filterwarnings("ignore")


def gen_restxt(output_dir_filename, map_tid, cid_tid_dict):
    pattern = re.compile(r'c(\d)_t(\d)')
    f_w = open(output_dir_filename, 'w')
    for key, res in cid_tid_dict.items():
        cid, tid = pattern.search(key).groups()
        cid = int(cid) + 1
        rects = res["rects"]
        frames = res["frames"]
        for idx, bbox in enumerate(rects):
            bbox[0][3:] -= bbox[0][1:3]
            fid = frames[idx] + 1
            rect = [max(int(x), 0) for x in bbox[0][1:]]
            if key in map_tid:
                new_tid = map_tid[key]
                f_w.write(
                    str(cid) + ' ' + str(new_tid) + ' ' + str(fid) + ' ' +
                    ' '.join(map(str, rect)) + '\n')
    print('gen_res: write file in {}'.format(output_dir_filename))
    f_w.close()


def get_mtmct_matching_results(pred_mtmct_file, secs_interval=0.5,
                               video_fps=20):
    res = np.loadtxt(pred_mtmct_file)  # 'cid, tid, fid, x1, y1, w, h, -1, -1'
    camera_ids = list(map(int, np.unique(res[:, 0])))

    res = res[:, :7]
    # each line in res: 'cid, tid, fid, x1, y1, w, h'

    camera_tids = []
    camera_results = dict()
    for c_id in camera_ids:
        camera_results[c_id] = res[res[:, 0] == c_id]
        tids = np.unique(camera_results[c_id][:, 1])
        tids = list(map(int, tids))
        camera_tids.append(tids)

    # select common tids throughout each video
    common_tids = reduce(np.intersect1d, camera_tids)

    # get mtmct matching results by cid_tid_fid_results[c_id][t_id][f_id]
    cid_tid_fid_results = dict()
    cid_tid_to_fids = dict()
    interval = int(secs_interval * video_fps)  # preferably less than 10
    for c_id in camera_ids:
        cid_tid_fid_results[c_id] = dict()
        cid_tid_to_fids[c_id] = dict()
        for t_id in common_tids:
            tid_mask = camera_results[c_id][:, 1] == t_id
            cid_tid_fid_results[c_id][t_id] = dict()

            camera_trackid_results = camera_results[c_id][tid_mask]
            fids = np.unique(camera_trackid_results[:, 2])
            fids = fids[fids % interval == 0]
            fids = list(map(int, fids))
            cid_tid_to_fids[c_id][t_id] = fids

            for f_id in fids:
                st_frame = f_id
                ed_frame = f_id + interval

                st_mask = camera_trackid_results[:, 2] >= st_frame
                ed_mask = camera_trackid_results[:, 2] < ed_frame
                frame_mask = np.logical_and(st_mask, ed_mask)
                cid_tid_fid_results[c_id][t_id][f_id] = camera_trackid_results[
                    frame_mask]

    return camera_results, cid_tid_fid_results


def save_mtmct_vis_results(camera_results, captures, output_dir):
    # camera_results: 'cid, tid, fid, x1, y1, w, h'
    camera_ids = list(camera_results.keys())

    import shutil
    save_dir = os.path.join(output_dir, 'mtmct_vis')
    if os.path.exists(save_dir):
        shutil.rmtree(save_dir)
    os.makedirs(save_dir)

    for idx, video_file in enumerate(captures):
        capture = cv2.VideoCapture(video_file)
        cid = camera_ids[idx]
        video_out_name = "mtmct_vis_c" + str(cid) + ".mp4"
        print("Start visualizing output video: {}".format(video_out_name))
        out_path = os.path.join(save_dir, video_out_name)

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
        while (1):
            if frame_id % 50 == 0:
                print('frame id: ', frame_id)
            ret, frame = capture.read()
            frame_id += 1
            if not ret:
                if frame_id == 1:
                    print("video read failed!")
                break
            frame_results = camera_results[cid][camera_results[cid][:, 2] ==
                                                frame_id]
            boxes = frame_results[:, -4:]
            ids = frame_results[:, 1]
            image = plot_tracking(frame, boxes, ids, frame_id=frame_id, fps=fps)
            writer.write(image)
        writer.release()


def get_euclidean(x, y, **kwargs):
    m = x.shape[0]
    n = y.shape[0]
    distmat = (np.power(x, 2).sum(axis=1, keepdims=True).repeat(
        n, axis=1) + np.power(y, 2).sum(axis=1, keepdims=True).repeat(
            m, axis=1).T)
    distmat -= np.dot(2 * x, y.T)
    return distmat


def cosine_similarity(x, y, eps=1e-12):
    """
    Computes cosine similarity between two tensors.
    Value == 1 means the same vector
    Value == 0 means perpendicular vectors
    """
    x_n, y_n = np.linalg.norm(
        x, axis=1, keepdims=True), np.linalg.norm(
            y, axis=1, keepdims=True)
    x_norm = x / np.maximum(x_n, eps * np.ones_like(x_n))
    y_norm = y / np.maximum(y_n, eps * np.ones_like(y_n))
    sim_mt = np.dot(x_norm, y_norm.T)
    return sim_mt


def get_cosine(x, y, eps=1e-12):
    """
    Computes cosine distance between two tensors.
    The cosine distance is the inverse cosine similarity
    -> cosine_distance = abs(-cosine_distance) to make it
    similar in behaviour to euclidean distance
    """
    sim_mt = cosine_similarity(x, y, eps)
    return sim_mt


def get_dist_mat(x, y, func_name="euclidean"):
    if func_name == "cosine":
        dist_mat = get_cosine(x, y)
    elif func_name == "euclidean":
        dist_mat = get_euclidean(x, y)
    print("Using {func_name} as distance function during evaluation")
    return dist_mat


def intracam_ignore(st_mask, cid_tids):
    count = len(cid_tids)
    for i in range(count):
        for j in range(count):
            if cid_tids[i][1] == cid_tids[j][1]:
                st_mask[i, j] = 0.
    return st_mask


def get_sim_matrix_new(cid_tid_dict, cid_tids):
    # Note: camera independent get_sim_matrix function,
    # which is different from the one in camera_utils.py.
    count = len(cid_tids)

    q_arr = np.array(
        [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)])
    g_arr = np.array(
        [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)])
    #compute distmat
    distmat = get_dist_mat(q_arr, g_arr, func_name="cosine")

    #mask the element which belongs to same video
    st_mask = np.ones((count, count), dtype=np.float32)
    st_mask = intracam_ignore(st_mask, cid_tids)

    sim_matrix = distmat * st_mask
    np.fill_diagonal(sim_matrix, 0.)
    return 1. - sim_matrix


def get_match(cluster_labels):
    cluster_dict = dict()
    cluster = list()
    for i, l in enumerate(cluster_labels):
        if l in list(cluster_dict.keys()):
            cluster_dict[l].append(i)
        else:
            cluster_dict[l] = [i]
    for idx in cluster_dict:
        cluster.append(cluster_dict[idx])
    return cluster


def get_cid_tid(cluster_labels, cid_tids):
    cluster = list()
    for labels in cluster_labels:
        cid_tid_list = list()
        for label in labels:
            cid_tid_list.append(cid_tids[label])
        cluster.append(cid_tid_list)
    return cluster


def get_labels(cid_tid_dict, cid_tids):
    #compute cost matrix between features
    cost_matrix = get_sim_matrix_new(cid_tid_dict, cid_tids)

    #cluster all the features
    cluster1 = AgglomerativeClustering(
        n_clusters=None,
        distance_threshold=0.5,
        affinity='precomputed',
        linkage='complete')
    cluster_labels1 = cluster1.fit_predict(cost_matrix)
    labels = get_match(cluster_labels1)

    sub_cluster = get_cid_tid(labels, cid_tids)
    return labels


def sub_cluster(cid_tid_dict):
    '''
    cid_tid_dict: all camera_id and track_id
    '''
    #get all keys
    cid_tids = sorted([key for key in cid_tid_dict.keys()])

    #cluster all trackid
    clu = get_labels(cid_tid_dict, cid_tids)

    #relabel every cluster groups
    new_clu = list()
    for c_list in clu:
        new_clu.append([cid_tids[c] for c in c_list])
    cid_tid_label = dict()
    for i, c_list in enumerate(new_clu):
        for c in c_list:
            cid_tid_label[c] = i + 1
    return cid_tid_label


def distill_idfeat(mot_res):
    qualities_list = mot_res["qualities"]
    feature_list = mot_res["features"]
    rects = mot_res["rects"]

    qualities_new = []
    feature_new = []
    #filter rect less than 100*20
    for idx, rect in enumerate(rects):
        conf, xmin, ymin, xmax, ymax = rect[0]
        if (xmax - xmin) * (ymax - ymin) and (xmax > xmin) > 2000:
            qualities_new.append(qualities_list[idx])
            feature_new.append(feature_list[idx])
    #take all features if available rect is less than 2
    if len(qualities_new) < 2:
        qualities_new = qualities_list
        feature_new = feature_list

    #if available frames number is more than 200, take one frame data per 20 frames
    if len(qualities_new) > 200:
        skipf = 20
    else:
        skipf = max(10, len(qualities_new) // 10)
    quality_skip = np.array(qualities_new[::skipf])
    feature_skip = np.array(feature_new[::skipf])

    #sort features with image qualities, take the most trustworth features
    topk_argq = np.argsort(quality_skip)[::-1]
    if (quality_skip > 0.6).sum() > 1:
        topk_feat = feature_skip[topk_argq[quality_skip > 0.6]]
    else:
        topk_feat = feature_skip[topk_argq]

    #get final features by mean or cluster, at most take five
    mean_feat = np.mean(topk_feat[:5], axis=0)
    return mean_feat


def res2dict(multi_res):
    cid_tid_dict = {}
    for cid, c_res in enumerate(multi_res):
        for tid, res in c_res.items():
            key = "c" + str(cid) + "_t" + str(tid)
            if key not in cid_tid_dict:
                cid_tid_dict[key] = res
                cid_tid_dict[key]['mean_feat'] = distill_idfeat(res)
    return cid_tid_dict


def mtmct_process(multi_res, captures, mtmct_vis=True, output_dir="output"):
    cid_tid_dict = res2dict(multi_res)
    map_tid = sub_cluster(cid_tid_dict)

    if not os.path.exists(output_dir):
        os.mkdir(output_dir)
    pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
    gen_restxt(pred_mtmct_file, map_tid, cid_tid_dict)

    if mtmct_vis:
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
            pred_mtmct_file)

        save_mtmct_vis_results(camera_results, captures, output_dir=output_dir)