lrn_mkldnn_op.cc 8.4 KB
Newer Older
T
Tomasz Patejko 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/lrn_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

25 26 27 28 29 30 31 32 33 34 35 36 37 38
namespace {
template <typename T, typename... Args>
std::shared_ptr<T> insert_to_context(const std::string& key,
                                     const MKLDNNDeviceContext& dev_ctx,
                                     Args&&... args) {
  auto p = std::static_pointer_cast<T, void>(dev_ctx.GetBlob(key));

  if (!p) {
    p = std::make_shared<T>(args...);
    dev_ctx.SetBlob(key, std::static_pointer_cast<void, T>(p));
  }

  return p;
}
39 40 41 42 43 44 45 46

template <typename... Args>
void run_primitive(Args&&... args) {
  auto forward_op = mkldnn::lrn_forward{args...};

  std::vector<mkldnn::primitive> pipeline = {forward_op};
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
47 48
}  // namespace

T
Tomasz Patejko 已提交
49 50 51 52
template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
53
    const bool is_float_type = std::is_same<T, float>::value;
M
minqiyang 已提交
54
    PADDLE_ENFORCE(is_float_type, "MKLDNN LRN must use float data.");
T
Tomasz Patejko 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto x = ctx.Input<Tensor>("X");
    auto out = ctx.Output<Tensor>("Out");
    auto mid = ctx.Output<Tensor>("MidOut");

    auto input_data = x->data<T>();
    auto output_data = out->mutable_data<T>(ctx.GetPlace());
    mid->mutable_data<T>(ctx.GetPlace());

    const int n = ctx.Attr<int>("n");
70
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
T
Tomasz Patejko 已提交
71 72
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");
73
    const bool is_test = ctx.Attr<bool>("is_test");
T
Tomasz Patejko 已提交
74 75 76 77 78 79 80

    auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
    e_mid = e_mid.constant(k);

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md = paddle::platform::MKLDNNMemDesc(
J
Jacek Czaja 已提交
81
        dims, mkldnn::memory::data_type::f32, x->format());
T
Tomasz Patejko 已提交
82

83 84 85 86 87 88 89
    auto forward_desc = mkldnn::lrn_forward::desc{mkldnn::prop_kind::forward,
                                                  mkldnn::lrn_across_channels,
                                                  src_md,
                                                  n,
                                                  alpha,
                                                  beta,
                                                  k};
T
Tomasz Patejko 已提交
90 91 92

    auto src_memory_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    if (!is_test) {
      const std::string key = ctx.op().Output("Out");
      const std::string key_src_memory = key + "@lrn_src_memory";
      const std::string key_pd = key + "@lrn_pd";
      const std::string key_workspace_memory = key + "@lrn_workspace_memory";

      auto forward_pd = insert_to_context<mkldnn::lrn_forward::primitive_desc>(
          key_pd, dev_ctx, forward_desc, mkldnn_engine);

      auto src_memory = insert_to_context<mkldnn::memory>(
          key_src_memory, dev_ctx, src_memory_pd);

      src_memory->set_data_handle(
          static_cast<void*>(const_cast<T*>(input_data)));

J
Jacek Czaja 已提交
108 109
      auto dst_memory = mkldnn::memory(forward_pd->dst_primitive_desc(),
                                       static_cast<void*>(output_data));
110 111 112 113
      auto workspace_memory = insert_to_context<mkldnn::memory>(
          key_workspace_memory, dev_ctx,
          forward_pd->workspace_primitive_desc());

114
      run_primitive(*forward_pd, *src_memory, *workspace_memory, dst_memory);
J
Jacek Czaja 已提交
115 116 117

      out->set_layout(framework::DataLayout::kMKLDNN);
      out->set_format(platform::GetMKLDNNFormat(dst_memory));
118 119 120 121 122 123 124
    } else {
      auto forward_pd =
          mkldnn::lrn_forward::primitive_desc{forward_desc, mkldnn_engine};
      auto src_memory = mkldnn::memory{
          src_memory_pd, static_cast<void*>(const_cast<T*>(input_data))};
      auto workspace_memory =
          mkldnn::memory{forward_pd.workspace_primitive_desc()};
J
Jacek Czaja 已提交
125 126
      auto dst_memory = mkldnn::memory(forward_pd.dst_primitive_desc(),
                                       static_cast<void*>(output_data));
T
Tomasz Patejko 已提交
127

128
      run_primitive(forward_pd, src_memory, workspace_memory, dst_memory);
J
Jacek Czaja 已提交
129 130 131

      out->set_layout(framework::DataLayout::kMKLDNN);
      out->set_format(platform::GetMKLDNNFormat(dst_memory));
132
    }
T
Tomasz Patejko 已提交
133 134 135 136 137 138 139
  }
};

template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
M
minqiyang 已提交
140 141
    const bool is_float_type = std::is_same<T, float>::value;
    PADDLE_ENFORCE(is_float_type, "MKLDNN LRN must use float data.");
T
Tomasz Patejko 已提交
142 143
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "MKLDNN LRN must use CPUPlace.");
144 145 146
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");
T
Tomasz Patejko 已提交
147 148 149 150 151 152 153 154 155 156 157 158

    auto x = ctx.Input<Tensor>("X");

    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    const std::string key = ctx.op().Input("Out");
    const std::string key_src_memory = key + "@lrn_src_memory";
    const std::string key_pd = key + "@lrn_pd";
    const std::string key_workspace_memory = key + "@lrn_workspace_memory";

    const int n = ctx.Attr<int>("n");
159
    const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
T
Tomasz Patejko 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    const float beta = ctx.Attr<float>("beta");
    const float k = ctx.Attr<float>("k");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto x_grad_data = x_grad->mutable_data<T>(ctx.GetPlace());
    auto out_grad_data = out_grad->data<T>();

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_src_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_dst_md = paddle::platform::MKLDNNMemDesc(
        dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);

    auto diff_dst_memory =
        mkldnn::memory{{diff_dst_md, mkldnn_engine},
                       static_cast<void*>(const_cast<float*>(out_grad_data))};

    auto diff_src_memory = mkldnn::memory{{diff_src_md, mkldnn_engine},
                                          static_cast<void*>(x_grad_data)};

    auto backward_desc = mkldnn::lrn_backward::desc{
188
        mkldnn::lrn_across_channels, src_md, diff_src_md, n, alpha, beta, k};
T
Tomasz Patejko 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

    auto forward_pd = dev_ctx.GetBlob(key_pd);

    auto backward_pd = mkldnn::lrn_backward::primitive_desc{
        backward_desc, mkldnn_engine,
        *static_cast<mkldnn::lrn_forward::primitive_desc*>(forward_pd.get())};

    std::shared_ptr<void> workspace_memory =
        dev_ctx.GetBlob(key_workspace_memory);

    auto src_memory = dev_ctx.GetBlob(key_src_memory);
    auto backward_op = mkldnn::lrn_backward{
        backward_pd, *static_cast<mkldnn::memory*>(src_memory.get()),
        diff_dst_memory, *static_cast<mkldnn::memory*>(workspace_memory.get()),
        diff_src_memory};

    std::vector<mkldnn::primitive> pipeline = {backward_op};
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::LRNMKLDNNGradOpKernel<float>);