You need to sign in or sign up before continuing.
checkpoint.py 8.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import errno
import os
import time
import re
import numpy as np
import paddle
W
wangxinxin08 已提交
26
import paddle.nn as nn
Q
qingqing01 已提交
27 28 29 30 31 32 33 34 35 36 37 38
from .download import get_weights_path

from .logger import setup_logger
logger = setup_logger(__name__)


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
K
Kaipeng Deng 已提交
39 40 41
    return path.startswith('http://') \
            or path.startswith('https://') \
            or path.startswith('ppdet://')
Q
qingqing01 已提交
42 43


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def _get_unique_endpoints(trainer_endpoints):
    # Sorting is to avoid different environmental variables for each card
    trainer_endpoints.sort()
    ips = set()
    unique_endpoints = set()
    for endpoint in trainer_endpoints:
        ip = endpoint.split(":")[0]
        if ip in ips:
            continue
        ips.add(ip)
        unique_endpoints.add(endpoint)
    logger.info("unique_endpoints {}".format(unique_endpoints))
    return unique_endpoints


K
Kaipeng Deng 已提交
59
def get_weights_path_dist(path):
Q
qingqing01 已提交
60 61 62 63 64 65 66 67 68 69 70
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
71 72 73
                from paddle.distributed import ParallelEnv
                unique_endpoints = _get_unique_endpoints(ParallelEnv()
                                                         .trainer_endpoints[:])
Q
qingqing01 已提交
74 75 76 77 78 79 80
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
81
                if ParallelEnv().current_endpoint in unique_endpoints:
Q
qingqing01 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)

    return path


def _strip_postfix(path):
    path, ext = os.path.splitext(path)
    assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
            "Unknown postfix {} from weights".format(ext)
    return path


def load_weight(model, weight, optimizer=None):
    if is_url(weight):
K
Kaipeng Deng 已提交
103
        weight = get_weights_path_dist(weight)
Q
qingqing01 已提交
104 105 106 107 108 109 110 111

    path = _strip_postfix(weight)
    pdparam_path = path + '.pdparams'
    if not os.path.exists(pdparam_path):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(pdparam_path))

    param_state_dict = paddle.load(pdparam_path)
112 113 114 115 116 117 118 119 120 121 122 123 124 125
    model_dict = model.state_dict()
    model_weight = {}
    incorrect_keys = 0

    for key in model_dict.keys():
        if key in param_state_dict.keys():
            model_weight[key] = param_state_dict[key]
        else:
            logger.info('Unmatched key: {}'.format(key))
            incorrect_keys += 1

    assert incorrect_keys == 0, "Load weight {} incorrectly, \
            {} keys unmatched, please check again.".format(weight,
                                                           incorrect_keys)
K
Kaipeng Deng 已提交
126
    logger.info('Finish resuming model weights: {}'.format(pdparam_path))
127 128

    model.set_dict(model_weight)
Q
qingqing01 已提交
129

G
Guanghua Yu 已提交
130
    last_epoch = 0
Q
qingqing01 已提交
131 132
    if optimizer is not None and os.path.exists(path + '.pdopt'):
        optim_state_dict = paddle.load(path + '.pdopt')
133
        # to solve resume bug, will it be fixed in paddle 2.0
Q
qingqing01 已提交
134 135 136 137 138 139
        for key in optimizer.state_dict().keys():
            if not key in optim_state_dict.keys():
                optim_state_dict[key] = optimizer.state_dict()[key]
        if 'last_epoch' in optim_state_dict:
            last_epoch = optim_state_dict.pop('last_epoch')
        optimizer.set_state_dict(optim_state_dict)
G
Guanghua Yu 已提交
140 141

    return last_epoch
Q
qingqing01 已提交
142 143


K
Kaipeng Deng 已提交
144
def load_pretrain_weight(model, pretrain_weight):
Q
qingqing01 已提交
145
    if is_url(pretrain_weight):
K
Kaipeng Deng 已提交
146
        pretrain_weight = get_weights_path_dist(pretrain_weight)
Q
qingqing01 已提交
147 148 149 150

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
151 152 153 154
        raise ValueError("Model pretrain path `{}` does not exists. "
                         "If you don't want to load pretrain model, "
                         "please delete `pretrain_weights` field in "
                         "config file.".format(path))
Q
qingqing01 已提交
155 156 157

    model_dict = model.state_dict()

K
Kaipeng Deng 已提交
158 159
    weights_path = path + '.pdparams'
    param_state_dict = paddle.load(weights_path)
160
    lack_backbone_weights_cnt = 0
K
Kaipeng Deng 已提交
161 162 163 164 165 166 167 168 169 170
    lack_modules = set()
    for name, weight in model_dict.items():
        if name in param_state_dict.keys():
            if weight.shape != list(param_state_dict[name].shape):
                logger.info(
                    '{} not used, shape {} unmatched with {} in model.'.format(
                        name, list(param_state_dict[name].shape), weight.shape))
                param_state_dict.pop(name, None)
        else:
            lack_modules.add(name.split('.')[0])
171 172 173 174 175 176 177
            if name.find('backbone') >= 0:
                logger.info('Lack backbone weights: {}'.format(name))
                lack_backbone_weights_cnt += 1

    if lack_backbone_weights_cnt > 0:
        logger.info('Lack {} weights in backbone.'.format(
            lack_backbone_weights_cnt))
K
Kaipeng Deng 已提交
178 179 180 181 182 183 184

    if len(lack_modules) > 0:
        logger.info('Lack weights of modules: {}'.format(', '.join(
            list(lack_modules))))

    model.set_dict(param_state_dict)
    logger.info('Finish loading model weights: {}'.format(weights_path))
Q
qingqing01 已提交
185 186


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def load_static_pretrain_weight(model, pretrain_weight):

    if is_url(pretrain_weight):
        pretrain_weight = get_weights_path_dist(pretrain_weight)

    path = _strip_postfix(pretrain_weight)
    if not (os.path.isdir(path) or os.path.isfile(path) or
            os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path `{}` does not exists. "
                         "If you don't want to load pretrain model, "
                         "please delete `pretrain_weights` field in "
                         "config file.".format(path))

    model_dict = model.state_dict()

    pre_state_dict = paddle.static.load_program_state(path)
    param_state_dict = {}
    for key in model_dict.keys():
        weight_name = model_dict[key].name
        if weight_name in pre_state_dict.keys():
            logger.info('Load weight: {}, shape: {}'.format(
                weight_name, pre_state_dict[weight_name].shape))
            param_state_dict[key] = pre_state_dict[weight_name]
        else:
            if 'backbone' in key:
                logger.info('Lack weight: {}, structure name: {}'.format(
                    weight_name, key))
            param_state_dict[key] = model_dict[key]
    model.set_dict(param_state_dict)
    return


Q
qingqing01 已提交
219 220 221
def save_model(model, optimizer, save_dir, save_name, last_epoch):
    """
    save model into disk.
222

Q
qingqing01 已提交
223 224 225 226 227 228 229 230
    Args:
        model (paddle.nn.Layer): the Layer instalce to save parameters.
        optimizer (paddle.optimizer.Optimizer): the Optimizer instance to
            save optimizer states.
        save_dir (str): the directory to be saved.
        save_name (str): the path to be saved.
        last_epoch (int): the epoch index.
    """
231 232
    if paddle.distributed.get_rank() != 0:
        return
Q
qingqing01 已提交
233 234 235
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    save_path = os.path.join(save_dir, save_name)
W
wangxinxin08 已提交
236 237 238 239 240 241
    if isinstance(model, nn.Layer):
        paddle.save(model.state_dict(), save_path + ".pdparams")
    else:
        assert isinstance(model,
                          dict), 'model is not a instance of nn.layer or dict'
        paddle.save(model, save_path + ".pdparams")
Q
qingqing01 已提交
242 243 244 245
    state_dict = optimizer.state_dict()
    state_dict['last_epoch'] = last_epoch
    paddle.save(state_dict, save_path + ".pdopt")
    logger.info("Save checkpoint: {}".format(save_dir))