multiplex_op.cu 3.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/framework/op_registry.h"
16
#include "paddle/operators/multiplex_op.h"
Y
Yibing Liu 已提交
17

Y
Yibing Liu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
namespace paddle {
namespace operators {

template <typename Place, typename T>
class MultiplexGPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
    auto* out = ctx.Output<framework::LoDTensor>("Out");

    out->mutable_data<T>(ctx.GetPlace());

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    // copy index to cpu
    framework::Tensor index_t_cpu;
    index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
    auto* index = index_t_cpu.data<T>();
    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    Place place = boost::get<Place>(ctx.GetPlace());
    for (auto i = 0; i < rows; i++) {
      int k = (int)index[i] + 1;
      PADDLE_ENFORCE_LT(k, ins.size(),
                        "index exceeds the number of candidate tensors.");
      memory::Copy(place, out->data<T>() + i * cols, place,
                   ins[k]->data<T>() + i * cols, cols * sizeof(T), stream);
    }
  }
};

template <typename Place, typename T>
class MultiplexGradGPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::Tensor>("X");
    auto d_ins =
        ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
    for (size_t i = 1; i < d_ins.size(); i++) {
      if (d_ins[i]) {
        d_ins[i]->mutable_data<T>(ctx.GetPlace());
        auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
        t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
      }
    }

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
    // copy index to cpu
    framework::Tensor index_t_cpu;
    index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
    auto* index = index_t_cpu.data<T>();

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    Place place = boost::get<Place>(ctx.GetPlace());
    for (auto i = 0; i < rows; i++) {
      int k = (int)index[i] + 1;
      if (d_ins[k]) {
        memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
                     d_out->data<T>() + i * cols, cols * sizeof(T), stream);
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

Y
Yibing Liu 已提交
89 90
namespace ops = paddle::operators;

Y
Yibing Liu 已提交
91 92
REGISTER_OP_GPU_KERNEL(
    multiplex, ops::MultiplexGPUKernel<paddle::platform::GPUPlace, float>);
93 94
REGISTER_OP_GPU_KERNEL(
    multiplex_grad,
Y
Yibing Liu 已提交
95
    ops::MultiplexGradGPUKernel<paddle::platform::GPUPlace, float>);