BufferArgTest.cpp 3.1 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "BufferArg.h"
#include <gtest/gtest.h>
H
hedaoyuan 已提交
17
#include "Function.h"
H
hedaoyuan 已提交
18
#include "paddle/math/MemoryHandle.h"
19
#include "paddle/math/SparseMatrix.h"
H
hedaoyuan 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

namespace paddle {

TEST(BufferTest, BufferArg) {
  TensorShape shape({8, 10});
  CpuMemoryHandle memory(shape.getElements() *
                         sizeOfValuType(VALUE_TYPE_FLOAT));
  BufferArg buffer(memory.getBuf(), VALUE_TYPE_FLOAT, shape);
  EXPECT_EQ(buffer.data(), memory.getBuf());
}

TEST(BufferTest, SequenceIdArg) {
  TensorShape shape({10});
  CpuMemoryHandle memory(shape.getElements() *
                         sizeOfValuType(VALUE_TYPE_INT32));
  SequenceIdArg buffer(memory.getBuf(), shape);
  EXPECT_EQ(buffer.data(), memory.getBuf());
  EXPECT_EQ(buffer.numSeqs(), 9);
}

TEST(BufferTest, asArgument) {
  MatrixPtr matrix = Matrix::create(100, 200);
  VectorPtr vector = Vector::create(100, false);
  CpuSparseMatrix sparse(200, 300, 50);

  // prepare arguments
  BufferArgs argments;
  argments.addArg(*matrix);
  argments.addArg(*vector);
  argments.addArg(sparse);

  // function
  auto function = [=](const BufferArgs& inputs) {
    EXPECT_EQ(inputs.size(), 3);

    // check inputs[0]
    EXPECT_EQ(inputs[0].shape().ndims(), 2);
    EXPECT_EQ(inputs[0].shape()[0], 100);
    EXPECT_EQ(inputs[0].shape()[1], 200);
    EXPECT_EQ(inputs[0].data(), matrix->getData());

    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getHeight(),
              matrix->getHeight());
    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getWidth(),
              matrix->getWidth());
    EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getData(), matrix->getData());

    // check inputs[1]
    EXPECT_EQ(inputs[1].shape().ndims(), 1);
    EXPECT_EQ(inputs[1].shape()[0], 100);
    EXPECT_EQ(inputs[1].data(), vector->getData());
    CpuVector inVector = inputs[1].vector<real, DEVICE_TYPE_CPU>();
    EXPECT_EQ(inVector.getSize(), vector->getSize());
    EXPECT_EQ(inVector.getData(), vector->getData());

    // check inputs[2]
    EXPECT_EQ(inputs[2].shape().ndims(), 2);
    EXPECT_EQ(inputs[2].shape()[0], 200);
    EXPECT_EQ(inputs[2].shape()[1], 300);
    EXPECT_EQ(inputs[2].data(), sparse.getData());
    // CHECK_EQ(inputs[2].sparse().nnz(), 50);
    // CHECK_EQ(inputs[2].sparse().dataFormat(), SPARSE_CSR_FORMAT);
    // CHECK_EQ(inputs[2].sparse().dataType(), SPARSE_FLOAT_VALUE);
    EXPECT_EQ(inputs[2].sparse().getRowBuf(), sparse.getRows());
    EXPECT_EQ(inputs[2].sparse().getColBuf(), sparse.getCols());
  };

  // call function
  function(argments);
}

}  // namespace paddle