random_op.cc 3.2 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dongzhihong 已提交
15
#include "paddle/operators/random_op.h"
D
dongzhihong 已提交
16
#include "glog/logging.h"
D
dongzhihong 已提交
17 18 19 20
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
D
dongzhihong 已提交
21

D
dongzhihong 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
template <typename T>
class GaussianRandomOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel {
public:
  void Compute(const framework::KernelContext& context) const override {
    auto mean = context.op_.GetAttr<T>("mean");
    auto std = context.op_.GetAttr<T>("std");
    auto* output = context.Output(0)->GetMutable<framework::Tensor>();
    T* r = output->mutable_data<T>(context.GetPlace());
    auto ctx =
        static_cast<const platform::CPUDeviceContext*>(context.device_context_);
    // generator need to modify context
    auto g = const_cast<platform::CPUDeviceContext*>(ctx)->RandGenerator();
    std::normal_distribution<T> distribution(mean, std);
    for (int i = 0; i < framework::product(output->dims()); ++i) {
      r[i] = distribution(g);
    }
  }
};

class GaussianRandomOp : public framework::OperatorWithKernel {
D
dongzhihong 已提交
43 44 45 46 47 48
protected:
  void InferShape(
      const std::vector<const framework::Tensor*>& inputs,
      const std::vector<framework::Tensor*>& outputs) const override {
    PADDLE_ENFORCE(inputs.size() == 0, "Input size of RandomOp must be zero.");
    PADDLE_ENFORCE(outputs.size() == 1, "Output size of RandomOp must be one.");
D
dongzhihong 已提交
49 50
    PADDLE_ENFORCE(outputs[0] != nullptr,
                   "Outputs of RandomOp must all be set.");
D
dongzhihong 已提交
51 52
    outputs[0]->Resize(
        framework::make_ddim(this->GetAttr<std::vector<int>>("shape")));
D
dongzhihong 已提交
53 54 55
  }
};

D
dongzhihong 已提交
56
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
57
public:
D
dongzhihong 已提交
58 59
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
60
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
D
dongzhihong 已提交
61
    AddAttr<std::vector<int>>("shape", "The shape of matrix to be randomized");
D
dongzhihong 已提交
62 63 64 65 66 67
    AddAttr<float>("mean", "mean value of random.").SetDefault(.0);
    AddAttr<float>("std", "minimum value of random value")
        .SetDefault(1.0)
        .LargerThan(.0);
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
D
dongzhihong 已提交
68 69
GaussianRandom Operator fill a matrix in normal distribution.
The eqution : Out = GaussianRandom(Shape=(d0, d1, ...), Dtype, mean, std)
D
dongzhihong 已提交
70 71 72 73 74 75 76
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
77 78 79
REGISTER_OP(gaussian_random,
            paddle::operators::GaussianRandomOp,
            paddle::operators::GaussianRandomOpMaker);
D
dongzhihong 已提交
80

D
dongzhihong 已提交
81 82 83 84
typedef paddle::operators::GaussianRandomOpKernel<paddle::platform::CPUPlace,
                                                  float>
    GaussianRandomOpKernel_CPU_float;
REGISTER_OP_CPU_KERNEL(gaussian_random, GaussianRandomOpKernel_CPU_float);