mot_sde_infer.py 36.4 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import re
import numpy as np
from collections import defaultdict

import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

from picodet_postprocess import PicoDetPostProcess
from utils import argsparser, Timer, get_current_memory_mb, _is_valid_video, video2frames
from det_infer import Detector, DetectorPicoDet, get_test_images, print_arguments, PredictConfig
from det_infer import load_predictor
from benchmark_utils import PaddleInferBenchmark
from visualize import plot_tracking

from mot.tracker import DeepSORTTracker
from mot.utils import MOTTimer, write_mot_results, flow_statistic, scale_coords, clip_box, preprocess_reid

from mot.mtmct.utils import parse_bias
from mot.mtmct.postprocess import trajectory_fusion, sub_cluster, gen_res, print_mtmct_result
from mot.mtmct.postprocess import get_mtmct_matching_results, save_mtmct_crops, save_mtmct_vis_results

# Global dictionary
MOT_SUPPORT_MODELS = {'DeepSORT'}


def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


class SDE_Detector(Detector):
    """
64 65
    Detector of SDE methods

W
wangguanzhong 已提交
66 67 68 69 70
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
71
        batch_size (int): size of per batch in inference, default is 1 in tracking models
W
wangguanzhong 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
105
        assert batch_size == 1, "The detector of tracking models only supports batch_size=1 now"
W
wangguanzhong 已提交
106 107
        self.pred_config = pred_config

108 109 110 111 112 113
    def postprocess(self,
                    boxes,
                    ori_image_shape,
                    threshold,
                    inputs,
                    scaled=False):
W
wangguanzhong 已提交
114 115 116 117 118 119 120 121 122 123 124 125
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        if not scaled:
            # scaled means whether the coords after detector outputs
            # have been scaled back to the original image, set True 
            # in general detector, set False in JDE YOLOv3.
126 127 128
            input_shape = inputs['image'].shape[2:]
            im_shape = inputs['im_shape'][0]
            scale_factor = inputs['scale_factor'][0]
W
wangguanzhong 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            pred_bboxes = scale_coords(boxes[:, 2:], input_shape, im_shape,
                                       scale_factor)
        else:
            pred_bboxes = boxes[:, 2:]

        pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)

        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)

        return pred_dets, pred_xyxys

152 153 154 155 156 157 158
    def predict(self,
                image_path,
                ori_image_shape,
                threshold=0.5,
                scaled=False,
                warmup=0,
                repeats=1):
W
wangguanzhong 已提交
159 160 161 162 163 164 165 166 167
        '''
        Args:
            image_path (list[str]): path of images, only support one image path
                (batch_size=1) in tracking model
            ori_image_shape (list[int]: original image shape
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
168 169
            pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
            pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
W
wangguanzhong 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
        '''
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(image_path)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
            pred_dets, pred_xyxys = self.postprocess(
200
                boxes, ori_image_shape, threshold, inputs, scaled=scaled)
W
wangguanzhong 已提交
201 202
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
203

W
wangguanzhong 已提交
204 205 206 207 208
        return pred_dets, pred_xyxys


class SDE_DetectorPicoDet(DetectorPicoDet):
    """
209 210 211
    PicoDet of SDE methods, the postprocess of PicoDet has not been exported as
        other detectors, so do postprocess here.

W
wangguanzhong 已提交
212 213 214 215 216
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
217
        batch_size (int): size of per batch in inference, default is 1 in tracking models
W
wangguanzhong 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        super(SDE_DetectorPicoDet, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
251
        assert batch_size == 1, "The detector of tracking models only supports batch_size=1 now"
W
wangguanzhong 已提交
252 253
        self.pred_config = pred_config

254
    def postprocess(self, boxes, ori_image_shape, threshold):
W
wangguanzhong 已提交
255 256 257 258 259 260 261 262 263 264
        over_thres_idx = np.nonzero(boxes[:, 1:2] >= threshold)[0]
        if len(over_thres_idx) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys
        else:
            boxes = boxes[over_thres_idx]

        pred_bboxes = boxes[:, 2:]

265
        pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape)
W
wangguanzhong 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
        if len(keep_idx[0]) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
            return pred_dets, pred_xyxys

        pred_scores = boxes[:, 1:2][keep_idx[0]]
        pred_cls_ids = boxes[:, 0:1][keep_idx[0]]
        pred_tlwhs = np.concatenate(
            (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1),
            axis=1)

        pred_dets = np.concatenate(
            (pred_tlwhs, pred_scores, pred_cls_ids), axis=1)
279

W
wangguanzhong 已提交
280 281
        return pred_dets, pred_xyxys

282 283 284 285 286 287 288
    def predict(self,
                image_path,
                ori_image_shape,
                threshold=0.5,
                scaled=False,
                warmup=0,
                repeats=1):
W
wangguanzhong 已提交
289 290
        '''
        Args:
291 292 293
            image_path (list[str]): path of images, only support one image path
                (batch_size=1) in tracking model
            ori_image_shape (list[int]: original image shape
W
wangguanzhong 已提交
294 295 296 297
            threshold (float): threshold of predicted box' score
            scaled (bool): whether the coords after detector outputs are scaled,
                default False in jde yolov3, set True in general detector.
        Returns:
298 299
            pred_dets (np.ndarray, [N, 6]): 'x,y,w,h,score,cls_id'
            pred_xyxys (np.ndarray, [N, 4]): 'x1,y1,x2,y2'
W
wangguanzhong 已提交
300 301
        '''
        self.det_times.preprocess_time_s.start()
302
        inputs = self.preprocess(image_path)
W
wangguanzhong 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        np_score_list, np_boxes_list = [], []
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            boxes = boxes_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
        self.det_times.inference_time_s.end(repeats=repeats)
332

W
wangguanzhong 已提交
333
        self.det_times.postprocess_time_s.start()
334
        self.picodet_postprocess = PicoDetPostProcess(
W
wangguanzhong 已提交
335 336 337 338 339
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
340 341
        boxes, boxes_num = self.picodet_postprocess(np_score_list,
                                                    np_boxes_list)
W
wangguanzhong 已提交
342 343 344 345 346

        if len(boxes) == 0:
            pred_dets = np.zeros((1, 6), dtype=np.float32)
            pred_xyxys = np.zeros((1, 4), dtype=np.float32)
        else:
347 348 349 350
            pred_dets, pred_xyxys = self.postprocess(boxes, ori_image_shape,
                                                     threshold)
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
W
wangguanzhong 已提交
351 352 353 354 355

        return pred_dets, pred_xyxys


class SDE_ReID(object):
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    """
    ReID of SDE methods

    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
        batch_size (int): size of per batch in inference, default 50 means at most
            50 sub images can be made a batch and send into ReID model
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

W
wangguanzhong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    def __init__(self,
                 pred_config,
                 model_dir,
                 device='CPU',
                 run_mode='fluid',
                 batch_size=50,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
        self.pred_config = pred_config
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
        self.batch_size = batch_size
        assert pred_config.tracker, "Tracking model should have tracker"
        pt = pred_config.tracker
        max_age = pt['max_age'] if 'max_age' in pt else 30
        max_iou_distance = pt[
            'max_iou_distance'] if 'max_iou_distance' in pt else 0.7
        self.tracker = DeepSORTTracker(
            max_age=max_age, max_iou_distance=max_iou_distance)

    def get_crops(self, xyxy, ori_img):
        w, h = self.tracker.input_size
        self.det_times.preprocess_time_s.start()
        crops = []
        xyxy = xyxy.astype(np.int64)
        ori_img = ori_img.transpose(1, 0, 2)  # [h,w,3]->[w,h,3]
        for i, bbox in enumerate(xyxy):
            crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
            crops.append(crop)
        crops = preprocess_reid(crops, w, h)
        self.det_times.preprocess_time_s.end()

        return crops

    def preprocess(self, crops):
        # to keep fast speed, only use topk crops
        crops = crops[:self.batch_size]
        inputs = {}
        inputs['crops'] = np.array(crops).astype('float32')
        return inputs

    def postprocess(self, pred_dets, pred_embs):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
445 446
            if tlwh[2] * tlwh[3] <= tracker.min_box_area:
                continue
W
wangguanzhong 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

        tracking_outs = {
            'online_tlwhs': online_tlwhs,
            'online_scores': online_scores,
            'online_ids': online_ids,
        }
        return tracking_outs

    def postprocess_mtmct(self, pred_dets, pred_embs, frame_id, seq_name):
        tracker = self.tracker
        tracker.predict()
        online_targets = tracker.update(pred_dets, pred_embs)

        online_tlwhs, online_scores, online_ids = [], [], []
        online_tlbrs, online_feats = [], []
        for t in online_targets:
            if not t.is_confirmed() or t.time_since_update > 1:
                continue
            tlwh = t.to_tlwh()
            tscore = t.score
            tid = t.track_id
474 475
            if tlwh[2] * tlwh[3] <= tracker.min_box_area:
                continue
W
wangguanzhong 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_scores.append(tscore)
            online_ids.append(tid)

            online_tlbrs.append(t.to_tlbr())
            online_feats.append(t.feat)

        tracking_outs = {
            'online_tlwhs': online_tlwhs,
            'online_scores': online_scores,
            'online_ids': online_ids,
            'feat_data': {},
        }
        for _tlbr, _id, _feat in zip(online_tlbrs, online_ids, online_feats):
            feat_data = {}
            feat_data['bbox'] = _tlbr
            feat_data['frame'] = f"{frame_id:06d}"
            feat_data['id'] = _id
            _imgname = f'{seq_name}_{_id}_{frame_id}.jpg'
            feat_data['imgname'] = _imgname
            feat_data['feat'] = _feat
            tracking_outs['feat_data'].update({_imgname: feat_data})
        return tracking_outs

    def predict(self,
                crops,
                pred_dets,
                warmup=0,
                repeats=1,
                MTMCT=False,
                frame_id=0,
                seq_name=''):
        self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        self.det_times.preprocess_time_s.end()

        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()

        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
        if MTMCT == False:
            tracking_outs = self.postprocess(pred_dets, pred_embs)
        else:
            tracking_outs = self.postprocess_mtmct(pred_dets, pred_embs,
                                                   frame_id, seq_name)
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1

        return tracking_outs


def predict_image(detector, reid_model, image_list):
    image_list.sort()
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
550
        ori_image_shape = list(frame.shape[:2])
W
wangguanzhong 已提交
551 552
        if FLAGS.run_benchmark:
            pred_dets, pred_xyxys = detector.predict(
553 554 555 556 557 558
                [img_file],
                ori_image_shape,
                FLAGS.threshold,
                FLAGS.scaled,
                warmup=10,
                repeats=10)
W
wangguanzhong 已提交
559 560 561 562 563 564
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
565 566
            pred_dets, pred_xyxys = detector.predict(
                [img_file], ori_image_shape, FLAGS.threshold, FLAGS.scaled)
W
wangguanzhong 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(i))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            if FLAGS.run_benchmark:
                tracking_outs = reid_model.predict(
                    crops, pred_dets, warmup=10, repeats=10)
            else:
                tracking_outs = reid_model.predict(crops, pred_dets)

                online_tlwhs = tracking_outs['online_tlwhs']
                online_scores = tracking_outs['online_scores']
                online_ids = tracking_outs['online_ids']

                online_im = plot_tracking(
                    frame, online_tlwhs, online_ids, online_scores, frame_id=i)

        if FLAGS.save_images:
            if not os.path.exists(FLAGS.output_dir):
                os.makedirs(FLAGS.output_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(FLAGS.output_dir, img_name)
            cv2.imwrite(out_path, online_im)
            print("save result to: " + out_path)


def predict_video(detector, reid_model, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    # Get Video info : resolution, fps, frame count
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(capture.get(cv2.CAP_PROP_FPS))
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print("fps: %d, frame_count: %d" % (fps, frame_count))

    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
    if not FLAGS.save_images:
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
    frame_id = 0
    timer = MOTTimer()
    results = defaultdict(list)
    id_set = set()
    interval_id_set = set()
    in_id_list = list()
    out_id_list = list()
    prev_center = dict()
    records = list()
    entrance = [0, height / 2., width, height / 2.]
    video_fps = fps

    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
636 637 638
        ori_image_shape = list(frame.shape[:2])
        pred_dets, pred_xyxys = detector.predict([frame], ori_image_shape,
                                                 FLAGS.threshold, FLAGS.scaled)
W
wangguanzhong 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            timer.toc()
            im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)
            tracking_outs = reid_model.predict(crops, pred_dets)

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']

            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))
            # NOTE: just implement flow statistic for one class
            result = (frame_id + 1, online_tlwhs, online_scores, online_ids)
            statistic = flow_statistic(
                result, FLAGS.secs_interval, FLAGS.do_entrance_counting,
                video_fps, entrance, id_set, interval_id_set, in_id_list,
                out_id_list, prev_center, records)
            id_set = statistic['id_set']
            interval_id_set = statistic['interval_id_set']
            in_id_list = statistic['in_id_list']
            out_id_list = statistic['out_id_list']
            prev_center = statistic['prev_center']
            records = statistic['records']

            timer.toc()

            fps = 1. / timer.duration
            im = plot_tracking(
                frame,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
                do_entrance_counting=FLAGS.do_entrance_counting,
                entrance=entrance)

        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
        else:
            writer.write(im)

        frame_id += 1
        print('detect frame:%d, fps: %f' % (frame_id, fps))

        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)

        result_filename = os.path.join(
            FLAGS.output_dir, video_name.split('.')[-2] + '_flow_statistic.txt')
        f = open(result_filename, 'w')
        for line in records:
            f.write(line)
        print('Flow statistic save in {}'.format(result_filename))
        f.close()

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(save_dir,
                                                              out_path)
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()


def predict_mtmct_seq(detector, reid_model, seq_name, output_dir):
    fpath = os.path.join(FLAGS.mtmct_dir, seq_name)
    if os.path.exists(os.path.join(fpath, 'img1')):
        fpath = os.path.join(fpath, 'img1')

    assert os.path.isdir(fpath), '{} should be a directory'.format(fpath)
    image_list = os.listdir(fpath)
    image_list.sort()
    assert len(image_list) > 0, '{} has no images.'.format(fpath)

    results = defaultdict(list)
    mot_features_dict = {}  # cid_tid_fid feats
734 735
    print('Totally {} frames found in seq {}.'.format(
        len(image_list), seq_name))
W
wangguanzhong 已提交
736 737 738 739 740 741 742

    for frame_id, img_file in enumerate(image_list):
        if frame_id % 40 == 0:
            print('Processing frame {} of seq {}.'.format(frame_id, seq_name))
        frame = cv2.imread(os.path.join(fpath, img_file))
        ori_image_shape = list(frame.shape[:2])
        frame_path = os.path.join(fpath, img_file)
743 744
        pred_dets, pred_xyxys = detector.predict([frame_path], ori_image_shape,
                                                 FLAGS.threshold, FLAGS.scaled)
W
wangguanzhong 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

        if len(pred_dets) == 1 and np.sum(pred_dets) == 0:
            print('Frame {} has no object, try to modify score threshold.'.
                  format(frame_id))
            online_im = frame
        else:
            # reid process
            crops = reid_model.get_crops(pred_xyxys, frame)

            tracking_outs = reid_model.predict(
                crops,
                pred_dets,
                MTMCT=True,
                frame_id=frame_id,
                seq_name=seq_name)

            feat_data_dict = tracking_outs['feat_data']
            mot_features_dict = dict(mot_features_dict, **feat_data_dict)

            online_tlwhs = tracking_outs['online_tlwhs']
            online_scores = tracking_outs['online_scores']
            online_ids = tracking_outs['online_ids']

            online_im = plot_tracking(frame, online_tlwhs, online_ids,
                                      online_scores, frame_id)
            results[0].append(
                (frame_id + 1, online_tlwhs, online_scores, online_ids))

        if FLAGS.save_images:
            save_dir = os.path.join(output_dir, seq_name)
            if not os.path.exists(save_dir): os.makedirs(save_dir)
            img_name = os.path.split(img_file)[-1]
            out_path = os.path.join(save_dir, img_name)
            cv2.imwrite(out_path, online_im)

    if FLAGS.save_mot_txts:
        result_filename = os.path.join(output_dir, seq_name + '.txt')
        write_mot_results(result_filename, results)

    return mot_features_dict


def predict_mtmct(detector, reid_model, mtmct_dir, mtmct_cfg):
    MTMCT = mtmct_cfg['MTMCT']
    assert MTMCT == True, 'predict_mtmct should be used for MTMCT.'

    cameras_bias = mtmct_cfg['cameras_bias']
    cid_bias = parse_bias(cameras_bias)
    scene_cluster = list(cid_bias.keys())

    # 1.zone releated parameters
    use_zone = mtmct_cfg['use_zone']
    zone_path = mtmct_cfg['zone_path']

    # 2.tricks parameters, can be used for other mtmct dataset
    use_ff = mtmct_cfg['use_ff']
    use_rerank = mtmct_cfg['use_rerank']

    # 3.camera releated parameters
    use_camera = mtmct_cfg['use_camera']
    use_st_filter = mtmct_cfg['use_st_filter']

    # 4.zone releated parameters
    use_roi = mtmct_cfg['use_roi']
    roi_dir = mtmct_cfg['roi_dir']

    mot_list_breaks = []
    cid_tid_dict = dict()

    output_dir = FLAGS.output_dir
    if not os.path.exists(output_dir): os.makedirs(output_dir)

    seqs = os.listdir(mtmct_dir)
    seqs.sort()

    for seq in seqs:
        fpath = os.path.join(mtmct_dir, seq)
        if os.path.isfile(fpath) and _is_valid_video(fpath):
            ext = seq.split('.')[-1]
            seq = seq.split('.')[-2]
            print('ffmpeg processing of video {}'.format(fpath))
826 827
            frames_path = video2frames(
                video_path=fpath, outpath=mtmct_dir, frame_rate=25)
W
wangguanzhong 已提交
828 829 830 831 832 833
            fpath = os.path.join(mtmct_dir, seq)

        if os.path.isdir(fpath) == False:
            print('{} is not a image folder.'.format(fpath))
            continue

834 835
        mot_features_dict = predict_mtmct_seq(detector, reid_model, seq,
                                              output_dir)
W
wangguanzhong 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

        cid = int(re.sub('[a-z,A-Z]', "", seq))
        tid_data, mot_list_break = trajectory_fusion(
            mot_features_dict,
            cid,
            cid_bias,
            use_zone=use_zone,
            zone_path=zone_path)
        mot_list_breaks.append(mot_list_break)
        # single seq process
        for line in tid_data:
            tracklet = tid_data[line]
            tid = tracklet['tid']
            if (cid, tid) not in cid_tid_dict:
                cid_tid_dict[(cid, tid)] = tracklet

    map_tid = sub_cluster(
        cid_tid_dict,
        scene_cluster,
        use_ff=use_ff,
        use_rerank=use_rerank,
        use_camera=use_camera,
        use_st_filter=use_st_filter)

    pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
    if use_camera:
        gen_res(pred_mtmct_file, scene_cluster, map_tid, mot_list_breaks)
    else:
        gen_res(
            pred_mtmct_file,
            scene_cluster,
            map_tid,
            mot_list_breaks,
            use_roi=use_roi,
            roi_dir=roi_dir)

    if FLAGS.save_images:
873
        camera_results, cid_tid_fid_res = get_mtmct_matching_results(
W
wangguanzhong 已提交
874 875 876 877 878 879 880 881
            pred_mtmct_file)

        crops_dir = os.path.join(output_dir, 'mtmct_crops')
        save_mtmct_crops(
            cid_tid_fid_res, images_dir=mtmct_dir, crops_dir=crops_dir)

        save_dir = os.path.join(output_dir, 'mtmct_vis')
        save_mtmct_vis_results(
882
            camera_results,
W
wangguanzhong 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
            images_dir=mtmct_dir,
            save_dir=save_dir,
            save_videos=FLAGS.save_images)

    # evalution metrics
    data_root_gt = os.path.join(mtmct_dir, '..', 'gt', 'gt.txt')
    if os.path.exists(data_root_gt):
        print_mtmct_result(data_root_gt, pred_mtmct_file)


def main():
    pred_config = PredictConfig(FLAGS.model_dir)
    detector_func = 'SDE_Detector'
    if pred_config.arch == 'PicoDet':
        detector_func = 'SDE_DetectorPicoDet'

    detector = eval(detector_func)(pred_config,
                                   FLAGS.model_dir,
                                   device=FLAGS.device,
                                   run_mode=FLAGS.run_mode,
                                   batch_size=FLAGS.batch_size,
                                   trt_min_shape=FLAGS.trt_min_shape,
                                   trt_max_shape=FLAGS.trt_max_shape,
                                   trt_opt_shape=FLAGS.trt_opt_shape,
                                   trt_calib_mode=FLAGS.trt_calib_mode,
                                   cpu_threads=FLAGS.cpu_threads,
                                   enable_mkldnn=FLAGS.enable_mkldnn)

    pred_config = PredictConfig(FLAGS.reid_model_dir)
    reid_model = SDE_ReID(
        pred_config,
        FLAGS.reid_model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.reid_batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, reid_model, FLAGS.camera_id)

    elif FLAGS.mtmct_dir is not None:
        mtmct_cfg_file = FLAGS.mtmct_cfg
        with open(mtmct_cfg_file) as f:
            mtmct_cfg = yaml.safe_load(f)
        predict_mtmct(detector, reid_model, FLAGS.mtmct_dir, mtmct_cfg)

    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, reid_model, img_list)

        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
            reid_model.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
            det_model_dir = FLAGS.model_dir
            det_model_info = {
                'model_name': det_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(detector, img_list, det_model_info, name='Det')

            reid_model_dir = FLAGS.reid_model_dir
            reid_model_info = {
                'model_name': reid_model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            bench_log(reid_model, img_list, reid_model_info, name='ReID')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()