ttfnet.py 4.9 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid

from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register

__all__ = ['TTFNet']


@register
class TTFNet(object):
    """
    TTFNet network, see https://arxiv.org/abs/1909.00700

    Args:
        backbone (object): backbone instance
        ttf_head (object): `TTFHead` instance
        num_classes (int): the number of classes, 80 by default.
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'ttf_head']
    __shared__ = ['num_classes']

    def __init__(self, backbone, ttf_head='TTFHead', num_classes=80):
        super(TTFNet, self).__init__()
        self.backbone = backbone
        self.ttf_head = ttf_head
        self.num_classes = num_classes

W
wangguanzhong 已提交
50
    def build(self, feed_vars, mode='train', exclude_nms=False):
W
wangguanzhong 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        im = feed_vars['image']

        mixed_precision_enabled = mixed_precision_global_state() is not None

        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

        body_feats = self.backbone(im)

        if isinstance(body_feats, OrderedDict):
            body_feat_names = list(body_feats.keys())
            body_feats = [body_feats[name] for name in body_feat_names]

        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]

        predict_hm, predict_wh = self.ttf_head.get_output(
            body_feats, 'ttf_head', is_test=mode == 'test')
        if mode == 'train':
            heatmap = feed_vars['ttf_heatmap']
            box_target = feed_vars['ttf_box_target']
            reg_weight = feed_vars['ttf_reg_weight']
            loss = self.ttf_head.get_loss(predict_hm, predict_wh, heatmap,
                                          box_target, reg_weight)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
        else:
            results = self.ttf_head.get_bboxes(predict_hm, predict_wh,
                                               feed_vars['scale_factor'])
            return results

    def _inputs_def(self, image_shape, downsample):
        im_shape = [None] + image_shape
        H, W = im_shape[2:]
        target_h = None if H is None else H // downsample
        target_w = None if W is None else W // downsample
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,                 'dtype': 'float32', 'lod_level': 0},
            'scale_factor':  {'shape': [None, 4],           'dtype': 'float32',   'lod_level': 0},
            'im_id':    {'shape': [None, 1],                'dtype': 'int64',   'lod_level': 0},
            'ttf_heatmap':  {'shape': [None, self.num_classes, target_h, target_w], 'dtype': 'float32', 'lod_level': 0},
            'ttf_box_target': {'shape': [None, 4, target_h, target_w],    'dtype': 'float32',   'lod_level': 0},
            'ttf_reg_weight': {'shape': [None, 1, target_h, target_w],    'dtype': 'float32', 'lod_level': 0},
        }
        # yapf: enable

        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=[
                'image', 'ttf_heatmap', 'ttf_box_target', 'ttf_reg_weight'
            ],  # for train
            use_dataloader=True,
            iterable=False,
            downsample=4):
        inputs_def = self._inputs_def(image_shape, downsample)
        feed_vars = OrderedDict([(key, fluid.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
            capacity=16,
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

    def train(self, feed_vars):
        return self.build(feed_vars, mode='train')

    def eval(self, feed_vars):
        return self.build(feed_vars, mode='test')

W
wangguanzhong 已提交
131 132
    def test(self, feed_vars, exclude_nms=False):
        return self.build(feed_vars, mode='test', exclude_nms=exclude_nms)