rbox_iou_op.h 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <cassert>
#include <cmath>
#include <vector>

#ifdef __CUDACC__
// Designates functions callable from the host (CPU) and the device (GPU)
#define HOST_DEVICE __host__ __device__
#define HOST_DEVICE_INLINE HOST_DEVICE __forceinline__
#else
#include <algorithm>
#define HOST_DEVICE
#define HOST_DEVICE_INLINE HOST_DEVICE inline
#endif

namespace {

template <typename T>
struct RotatedBox {
  T x_ctr, y_ctr, w, h, a;
};

template <typename T>
struct Point {
  T x, y;
  HOST_DEVICE_INLINE Point(const T& px = 0, const T& py = 0) : x(px), y(py) {}
  HOST_DEVICE_INLINE Point operator+(const Point& p) const {
    return Point(x + p.x, y + p.y);
  }
  HOST_DEVICE_INLINE Point& operator+=(const Point& p) {
    x += p.x;
    y += p.y;
    return *this;
  }
  HOST_DEVICE_INLINE Point operator-(const Point& p) const {
    return Point(x - p.x, y - p.y);
  }
  HOST_DEVICE_INLINE Point operator*(const T coeff) const {
    return Point(x * coeff, y * coeff);
  }
};

template <typename T>
HOST_DEVICE_INLINE T dot_2d(const Point<T>& A, const Point<T>& B) {
  return A.x * B.x + A.y * B.y;
}

template <typename T>
HOST_DEVICE_INLINE T cross_2d(const Point<T>& A, const Point<T>& B) {
  return A.x * B.y - B.x * A.y;
}

template <typename T>
HOST_DEVICE_INLINE void get_rotated_vertices(
    const RotatedBox<T>& box,
    Point<T> (&pts)[4]) {
  // M_PI / 180. == 0.01745329251
  //double theta = box.a * 0.01745329251;
  //MODIFIED
  double theta = box.a;
  T cosTheta2 = (T)cos(theta) * 0.5f;
  T sinTheta2 = (T)sin(theta) * 0.5f;

  // y: top --> down; x: left --> right
  pts[0].x = box.x_ctr - sinTheta2 * box.h - cosTheta2 * box.w;
  pts[0].y = box.y_ctr + cosTheta2 * box.h - sinTheta2 * box.w;
  pts[1].x = box.x_ctr + sinTheta2 * box.h - cosTheta2 * box.w;
  pts[1].y = box.y_ctr - cosTheta2 * box.h - sinTheta2 * box.w;
  pts[2].x = 2 * box.x_ctr - pts[0].x;
  pts[2].y = 2 * box.y_ctr - pts[0].y;
  pts[3].x = 2 * box.x_ctr - pts[1].x;
  pts[3].y = 2 * box.y_ctr - pts[1].y;
}

template <typename T>
HOST_DEVICE_INLINE int get_intersection_points(
    const Point<T> (&pts1)[4],
    const Point<T> (&pts2)[4],
    Point<T> (&intersections)[24]) {
  // Line vector
  // A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
  Point<T> vec1[4], vec2[4];
  for (int i = 0; i < 4; i++) {
    vec1[i] = pts1[(i + 1) % 4] - pts1[i];
    vec2[i] = pts2[(i + 1) % 4] - pts2[i];
  }

  // Line test - test all line combos for intersection
  int num = 0; // number of intersections
  for (int i = 0; i < 4; i++) {
    for (int j = 0; j < 4; j++) {
      // Solve for 2x2 Ax=b
      T det = cross_2d<T>(vec2[j], vec1[i]);

      // This takes care of parallel lines
      if (fabs(det) <= 1e-14) {
        continue;
      }

      auto vec12 = pts2[j] - pts1[i];

      T t1 = cross_2d<T>(vec2[j], vec12) / det;
      T t2 = cross_2d<T>(vec1[i], vec12) / det;

      if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
        intersections[num++] = pts1[i] + vec1[i] * t1;
      }
    }
  }

  // Check for vertices of rect1 inside rect2
  {
    const auto& AB = vec2[0];
    const auto& DA = vec2[3];
    auto ABdotAB = dot_2d<T>(AB, AB);
    auto ADdotAD = dot_2d<T>(DA, DA);
    for (int i = 0; i < 4; i++) {
      // assume ABCD is the rectangle, and P is the point to be judged
      // P is inside ABCD iff. P's projection on AB lies within AB
      // and P's projection on AD lies within AD

      auto AP = pts1[i] - pts2[0];

      auto APdotAB = dot_2d<T>(AP, AB);
      auto APdotAD = -dot_2d<T>(AP, DA);

      if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
          (APdotAD <= ADdotAD)) {
        intersections[num++] = pts1[i];
      }
    }
  }

  // Reverse the check - check for vertices of rect2 inside rect1
  {
    const auto& AB = vec1[0];
    const auto& DA = vec1[3];
    auto ABdotAB = dot_2d<T>(AB, AB);
    auto ADdotAD = dot_2d<T>(DA, DA);
    for (int i = 0; i < 4; i++) {
      auto AP = pts2[i] - pts1[0];

      auto APdotAB = dot_2d<T>(AP, AB);
      auto APdotAD = -dot_2d<T>(AP, DA);

      if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
          (APdotAD <= ADdotAD)) {
        intersections[num++] = pts2[i];
      }
    }
  }

  return num;
}

template <typename T>
HOST_DEVICE_INLINE int convex_hull_graham(
    const Point<T> (&p)[24],
    const int& num_in,
    Point<T> (&q)[24],
    bool shift_to_zero = false) {
  assert(num_in >= 2);

  // Step 1:
  // Find point with minimum y
  // if more than 1 points have the same minimum y,
  // pick the one with the minimum x.
  int t = 0;
  for (int i = 1; i < num_in; i++) {
    if (p[i].y < p[t].y || (p[i].y == p[t].y && p[i].x < p[t].x)) {
      t = i;
    }
  }
  auto& start = p[t]; // starting point

  // Step 2:
  // Subtract starting point from every points (for sorting in the next step)
  for (int i = 0; i < num_in; i++) {
    q[i] = p[i] - start;
  }

  // Swap the starting point to position 0
  auto tmp = q[0];
  q[0] = q[t];
  q[t] = tmp;

  // Step 3:
  // Sort point 1 ~ num_in according to their relative cross-product values
  // (essentially sorting according to angles)
  // If the angles are the same, sort according to their distance to origin
  T dist[24];
  for (int i = 0; i < num_in; i++) {
    dist[i] = dot_2d<T>(q[i], q[i]);
  }

#ifdef __CUDACC__
  // CUDA version
  // In the future, we can potentially use thrust
  // for sorting here to improve speed (though not guaranteed)
  for (int i = 1; i < num_in - 1; i++) {
    for (int j = i + 1; j < num_in; j++) {
      T crossProduct = cross_2d<T>(q[i], q[j]);
      if ((crossProduct < -1e-6) ||
          (fabs(crossProduct) < 1e-6 && dist[i] > dist[j])) {
        auto q_tmp = q[i];
        q[i] = q[j];
        q[j] = q_tmp;
        auto dist_tmp = dist[i];
        dist[i] = dist[j];
        dist[j] = dist_tmp;
      }
    }
  }
#else
  // CPU version
  std::sort(
      q + 1, q + num_in, [](const Point<T>& A, const Point<T>& B) -> bool {
        T temp = cross_2d<T>(A, B);
        if (fabs(temp) < 1e-6) {
          return dot_2d<T>(A, A) < dot_2d<T>(B, B);
        } else {
          return temp > 0;
        }
      });
#endif

  // Step 4:
  // Make sure there are at least 2 points (that don't overlap with each other)
  // in the stack
  int k; // index of the non-overlapped second point
  for (k = 1; k < num_in; k++) {
    if (dist[k] > 1e-8) {
      break;
    }
  }
  if (k == num_in) {
    // We reach the end, which means the convex hull is just one point
    q[0] = p[t];
    return 1;
  }
  q[1] = q[k];
  int m = 2; // 2 points in the stack
  // Step 5:
  // Finally we can start the scanning process.
  // When a non-convex relationship between the 3 points is found
  // (either concave shape or duplicated points),
  // we pop the previous point from the stack
  // until the 3-point relationship is convex again, or
  // until the stack only contains two points
  for (int i = k + 1; i < num_in; i++) {
    while (m > 1 && cross_2d<T>(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
      m--;
    }
    q[m++] = q[i];
  }

  // Step 6 (Optional):
  // In general sense we need the original coordinates, so we
  // need to shift the points back (reverting Step 2)
  // But if we're only interested in getting the area/perimeter of the shape
  // We can simply return.
  if (!shift_to_zero) {
    for (int i = 0; i < m; i++) {
      q[i] += start;
    }
  }

  return m;
}

template <typename T>
HOST_DEVICE_INLINE T polygon_area(const Point<T> (&q)[24], const int& m) {
  if (m <= 2) {
    return 0;
  }

  T area = 0;
  for (int i = 1; i < m - 1; i++) {
    area += fabs(cross_2d<T>(q[i] - q[0], q[i + 1] - q[0]));
  }

  return area / 2.0;
}

template <typename T>
HOST_DEVICE_INLINE T rboxes_intersection(
    const RotatedBox<T>& box1,
    const RotatedBox<T>& box2) {
  // There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
  // from rotated_rect_intersection_pts
  Point<T> intersectPts[24], orderedPts[24];

  Point<T> pts1[4];
  Point<T> pts2[4];
  get_rotated_vertices<T>(box1, pts1);
  get_rotated_vertices<T>(box2, pts2);

  int num = get_intersection_points<T>(pts1, pts2, intersectPts);

  if (num <= 2) {
    return 0.0;
  }

  // Convex Hull to order the intersection points in clockwise order and find
  // the contour area.
  int num_convex = convex_hull_graham<T>(intersectPts, num, orderedPts, true);
  return polygon_area<T>(orderedPts, num_convex);
}

} // namespace

template <typename T>
HOST_DEVICE_INLINE T
rbox_iou_single(T const* const box1_raw, T const* const box2_raw) {
  // shift center to the middle point to achieve higher precision in result
  RotatedBox<T> box1, box2;
  auto center_shift_x = (box1_raw[0] + box2_raw[0]) / 2.0;
  auto center_shift_y = (box1_raw[1] + box2_raw[1]) / 2.0;
  box1.x_ctr = box1_raw[0] - center_shift_x;
  box1.y_ctr = box1_raw[1] - center_shift_y;
  box1.w = box1_raw[2];
  box1.h = box1_raw[3];
  box1.a = box1_raw[4];
  box2.x_ctr = box2_raw[0] - center_shift_x;
  box2.y_ctr = box2_raw[1] - center_shift_y;
  box2.w = box2_raw[2];
  box2.h = box2_raw[3];
  box2.a = box2_raw[4];

  const T area1 = box1.w * box1.h;
  const T area2 = box2.w * box2.h;
  if (area1 < 1e-14 || area2 < 1e-14) {
    return 0.f;
  }

  const T intersection = rboxes_intersection<T>(box1, box2);
  const T iou = intersection / (area1 + area2 - intersection);
  return iou;
}