activation_op.h 29.3 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Q
qijun 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
class ActivationHelper {
 public:
  framework::OpKernelType GetKernelType(
      const framework::ExecutionContext& ctx,
      const framework::OperatorWithKernel& oper) const {
    framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
    }
#endif
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    if (ctx.HasAttr("data_format")) {
      std::string data_format = ctx.Attr<std::string>("data_format");
      layout = framework::StringToDataLayout(data_format);
    }
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.GetPlace(), layout, library);
  }
};

Q
QI JUN 已提交
50
template <typename DeviceContext, typename Functor>
51 52
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
53
 public:
54 55
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
56
  void Compute(const framework::ExecutionContext& context) const override {
Y
Update  
Yang Yu 已提交
57 58 59 60 61 62 63 64 65 66
    auto& X = detail::Ref(context.Input<framework::Tensor>("X"),
                          "Cannot get input tensor X, variable name = %s",
                          context.op().Input("X"));

    auto& Out = detail::Ref(context.Output<framework::Tensor>("Out"),
                            "Cannot get output tensor Out, variable name = %s",
                            context.op().Output("Out"));
    Out.mutable_data<T>(context.GetPlace());
    auto x = framework::EigenVector<T>::Flatten(X);
    auto out = framework::EigenVector<T>::Flatten(Out);
Q
QI JUN 已提交
67 68
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
69
    Functor functor;
70 71 72 73 74

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
75
    functor(*place, x, out);
Q
qijun 已提交
76 77 78
  }
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
template <typename Functor>
class MKLDNNActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(!context.HasAttr("X"),
                   "Cannot find input tensor X, variable name = %s",
                   context.op().Input("X"));
    PADDLE_ENFORCE(!context.HasAttr("Out"),
                   "Cannot find output tensor Out, variable name = %s",
                   context.op().Output("Out"));
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

Q
QI JUN 已提交
100
template <typename DeviceContext, typename Functor>
101 102
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
103
 public:
104
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
105 106
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
F
fengjiayi 已提交
107 108 109
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
Q
qijun 已提交
110 111 112
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

F
fengjiayi 已提交
113
    auto dout = framework::EigenVector<T>::Flatten(*dOut);
Q
qijun 已提交
114
    auto x = framework::EigenVector<T>::Flatten(*X);
F
fengjiayi 已提交
115
    auto out = framework::EigenVector<T>::Flatten(*Out);
Q
qijun 已提交
116
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
117 118
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
119
    Functor functor;
120 121 122 123
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
124
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
125 126 127
  }
};

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
template <typename Functor>
class MKLDNNActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    Functor functor;

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
    functor(context);
  }
};

143 144 145 146 147 148 149 150 151
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

152
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
153
template <typename T>
154
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
155 156 157
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
158 159 160
  }
};

161
template <typename T>
162
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
163 164 165 166
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
167 168 169
  }
};

170 171 172 173
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
174
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
175 176 177 178 179 180 181 182 183 184
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
185 186
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
187
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
188
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
189 190 191 192 193 194 195 196
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
197 198 199
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
200 201
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
202
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
203 204 205
  }
};

Q
qijun 已提交
206
// exp(x) = e^x
207 208
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
209 210 211
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
212 213 214
  }
};

215 216
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
217 218 219 220
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
221 222 223
  }
};

Q
qijun 已提交
224
// relu(x) = max(x, 0)
Q
qijun 已提交
225
template <typename T>
226
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
227 228 229
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
230 231
  }
};
Q
qijun 已提交
232

Q
qijun 已提交
233
template <typename T>
234
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
235 236 237 238
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
239 240
  }
};
Q
qijun 已提交
241

242
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
243 244
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
245 246 247
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
248 249 250 251
  }
};

template <typename T>
252
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
253 254 255 256
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
257 258 259
  }
};

K
Kavya Srinet 已提交
260 261 262 263
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
264 265 266
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
267 268 269 270 271
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
272 273 274 275
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
276 277 278
  }
};

279 280 281 282 283 284 285 286 287
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
288 289
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
290 291
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
292
    out.device(d) = x * (temp1 + temp2);
293 294 295 296 297 298 299 300 301 302 303
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
304 305 306
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
307 308
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
309
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
310 311 312
  }
};

K
Kexin Zhao 已提交
313
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
314 315 316 317 318 319 320 321
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
322 323
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
324 325 326
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
327
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
328 329 330 331 332 333 334 335 336
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
337 338 339
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
340 341 342
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
343
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
344 345 346
  }
};

Q
qijun 已提交
347
// sqrt(x) = x^(1/2)
348 349
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
350 351 352
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
353 354 355 356
  }
};

template <typename T>
357
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
358 359 360 361 362
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    const Out out_conj = Eigen::numext::conj(out);
    dx.device(d) = static_cast<T>(0.5) * dout / out_conj;
Q
qijun 已提交
363 364 365
  }
};

D
dzhwinter 已提交
366 367 368
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
369 370 371
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
372 373 374 375 376
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
377 378 379
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
380 381 382 383 384 385 386
    dx.device(d) = static_cast<T>(0) / x;
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
387 388
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
389
    out.device(d) = x.floor();
D
dzhwinter 已提交
390 391 392 393 394 395
  }
};

// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
396 397 398
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
399 400 401
  }
};

Q
qijun 已提交
402
// abs(x) = |x|
403 404
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
405 406 407
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
408 409 410
  }
};

411 412
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
413 414 415 416
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
417 418 419
  }
};

Q
qijun 已提交
420 421
// reciprocal(x) = 1 / x
template <typename T>
422
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
423 424 425
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
426 427 428
  }
};

429
template <typename T>
430
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
431 432 433 434
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
435 436 437 438
  }
};

// log(x) = natural logarithm of x
439 440
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
441 442 443
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
444 445 446
  }
};

447
template <typename T>
448
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
449 450 451 452
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
453 454 455 456
  }
};

// square(x) = x^2
457 458
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
459 460 461
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
462
  }
463
};
Q
qijun 已提交
464

465
template <typename T>
466
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
467 468 469 470
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
471 472 473
  }
};

474 475 476 477 478 479 480 481 482 483
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
484

F
fengjiayi 已提交
485 486 487
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
488
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
489 490 491
  }
};

492 493 494 495 496 497 498
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
499 500 501 502
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
503 504
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
505 506 507
  }
};

508 509 510 511 512 513 514 515 516
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
517 518 519
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
520
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
521 522 523 524 525 526 527 528 529
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
530 531 532 533
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
534 535
                   ((x > static_cast<T>(0)) * (x < static_cast<T>(threshold)))
                       .template cast<T>();
536 537 538
  }
};

K
kexinzhao 已提交
539 540 541 542 543 544 545
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
546 547
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
548
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
549
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
550 551 552 553 554 555 556 557 558
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
559 560 561
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
562
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
563 564
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
565 566 567
  }
};

568 569
// softsign(x) = x / (1 + |x|)
template <typename T>
570
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
571 572 573
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
574 575 576 577 578 579
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
580
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
581 582 583
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
584
    dx.device(d) =
F
fengjiayi 已提交
585
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
586 587 588
  }
};

589 590 591 592 593 594
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
595

F
fengjiayi 已提交
596 597
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
598 599
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
600
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
601 602 603
  }
};

604 605 606 607 608 609
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
610 611 612
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
613 614
    auto tmp = static_cast<T>(threshold);
    auto temp = ((x > -tmp) * (x < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
615
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
616 617 618
  }
};

K
Kavya Srinet 已提交
619 620 621 622 623 624
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
625

F
fengjiayi 已提交
626 627 628
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
629 630 631
  }
};

K
Kavya Srinet 已提交
632 633 634 635 636 637
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
638 639 640
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
641 642
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
643
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
644
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
645 646 647
  }
};

648 649 650 651 652 653
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
654

F
fengjiayi 已提交
655 656 657 658 659
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
660 661 662
  }
};

663 664 665 666 667 668
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
669 670 671 672 673
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
674
                       (x < static_cast<T>(0)).template cast<T>();
675 676 677
  }
};

Q
QI JUN 已提交
678
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
679 680 681 682 683 684
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
685 686 687
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
688 689 690
  }
};

691 692 693 694 695 696
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
697 698 699 700
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
Y
Yu Yang 已提交
701
                   x.pow(static_cast<T>(factor - static_cast<T>(1)));
702 703 704
  }
};

705 706 707 708 709 710 711
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
712

F
fengjiayi 已提交
713 714 715
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
716
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
717 718 719
  }
};

720 721 722 723 724 725 726
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
727

F
fengjiayi 已提交
728 729 730
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
731 732 733
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
734
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
735 736 737
  }
};

738 739 740 741 742 743 744
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
745 746
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
747
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
748
    out.device(d) = (x > th).template cast<T>() * x;
749 750 751 752 753 754 755 756 757 758
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
759 760 761
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
762
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
763
    dx.device(d) = dout * (x > th).template cast<T>();
764 765 766
  }
};

767 768 769 770 771 772 773 774
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
775 776
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
777
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
778 779
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
780 781 782 783 784 785 786 787 788 789 790
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
791 792 793 794 795 796 797
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
798 799 800
  }
};

A
Abhinav Arora 已提交
801 802 803 804 805 806 807
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
808 809 810
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
811 812 813 814 815 816 817 818 819 820
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
821 822 823
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
824 825
    auto temp1 = static_cast<T>(1) /
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
F
fengjiayi 已提交
826 827
    auto temp2 = temp1 * (static_cast<T>(1) - (beta * out));
    dx.device(d) = dout * ((beta * out) + temp2);
A
Abhinav Arora 已提交
828 829 830
  }
};

Q
qijun 已提交
831 832
}  // namespace operators
}  // namespace paddle
833

834 835 836 837 838 839 840 841
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
842 843 844
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
860
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
861
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);