onnx_infer.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import six
import glob
import copy
import yaml
import argparse
import cv2
import numpy as np
from shapely.geometry import Polygon
from onnxruntime import InferenceSession


# preprocess ops
def decode_image(img_path):
    with open(img_path, 'rb') as f:
        im_read = f.read()
    data = np.frombuffer(im_read, dtype='uint8')
    im = cv2.imdecode(data, 1)  # BGR mode, but need RGB mode
    im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
    img_info = {
        "im_shape": np.array(
            im.shape[:2], dtype=np.float32),
        "scale_factor": np.array(
            [1., 1.], dtype=np.float32)
    }
    return im, img_info


class Resize(object):
    def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
        if isinstance(target_size, int):
            target_size = [target_size, target_size]
        self.target_size = target_size
        self.keep_ratio = keep_ratio
        self.interp = interp

    def __call__(self, im, im_info):
        assert len(self.target_size) == 2
        assert self.target_size[0] > 0 and self.target_size[1] > 0
        im_channel = im.shape[2]
        im_scale_y, im_scale_x = self.generate_scale(im)
        im = cv2.resize(
            im,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)
        im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
        im_info['scale_factor'] = np.array(
            [im_scale_y, im_scale_x]).astype('float32')
        return im, im_info

    def generate_scale(self, im):
        origin_shape = im.shape[:2]
        im_c = im.shape[2]
        if self.keep_ratio:
            im_size_min = np.min(origin_shape)
            im_size_max = np.max(origin_shape)
            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)
            im_scale = float(target_size_min) / float(im_size_min)
            if np.round(im_scale * im_size_max) > target_size_max:
                im_scale = float(target_size_max) / float(im_size_max)
            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / float(origin_shape[0])
            im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x


class Permute(object):
    def __init__(self, ):
        super(Permute, self).__init__()

    def __call__(self, im, im_info):
        im = im.transpose((2, 0, 1))
        return im, im_info


class NormalizeImage(object):
    def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
        self.mean = mean
        self.std = std
        self.is_scale = is_scale
        self.norm_type = norm_type

    def __call__(self, im, im_info):
        im = im.astype(np.float32, copy=False)
        if self.is_scale:
            scale = 1.0 / 255.0
            im *= scale

        if self.norm_type == 'mean_std':
            mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
            std = np.array(self.std)[np.newaxis, np.newaxis, :]
            im -= mean
            im /= std
        return im, im_info


class PadStride(object):
    def __init__(self, stride=0):
        self.coarsest_stride = stride

    def __call__(self, im, im_info):
        coarsest_stride = self.coarsest_stride
        if coarsest_stride <= 0:
            return im, im_info
        im_c, im_h, im_w = im.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = im
        return padding_im, im_info


class Compose:
    def __init__(self, transforms):
        self.transforms = []
        for op_info in transforms:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            self.transforms.append(eval(op_type)(**new_op_info))

    def __call__(self, img_path):
        img, im_info = decode_image(img_path)
        for t in self.transforms:
            img, im_info = t(img, im_info)
        inputs = copy.deepcopy(im_info)
        inputs['image'] = img
        return inputs


# postprocess
def rbox_iou(g, p):
    g = np.array(g)
    p = np.array(p)
    g = Polygon(g[:8].reshape((4, 2)))
    p = Polygon(p[:8].reshape((4, 2)))
    g = g.buffer(0)
    p = p.buffer(0)
    if not g.is_valid or not p.is_valid:
        return 0
    inter = Polygon(g).intersection(Polygon(p)).area
    union = g.area + p.area - inter
    if union == 0:
        return 0
    else:
        return inter / union


def multiclass_nms_rotated(pred_bboxes,
                           pred_scores,
                           iou_threshlod=0.1,
                           score_threshold=0.1):
    """
    Args:
        pred_bboxes (numpy.ndarray): [B, N, 8]
        pred_scores (numpy.ndarray): [B, C, N]
    
    Return:
        bboxes (numpy.ndarray): [N, 10]
        bbox_num (numpy.ndarray): [B]
    """
    bbox_num = []
    bboxes = []
    for bbox_per_img, score_per_img in zip(pred_bboxes, pred_scores):
        num_per_img = 0
        for cls_id, score_per_cls in enumerate(score_per_img):
            keep_mask = score_per_cls > score_threshold
            bbox = bbox_per_img[keep_mask]
            score = score_per_cls[keep_mask]

            idx = score.argsort()[::-1]
            bbox = bbox[idx]
            score = score[idx]
            keep_idx = []
            for i, b in enumerate(bbox):
                supressed = False
                for gi in keep_idx:
                    g = bbox[gi]
                    if rbox_iou(b, g) > iou_threshlod:
                        supressed = True
                        break

                if supressed:
                    continue

                keep_idx.append(i)

            keep_box = bbox[keep_idx]
            keep_score = score[keep_idx]
            keep_cls_ids = np.ones(len(keep_idx)) * cls_id
            bboxes.append(
                np.concatenate(
                    [keep_cls_ids[:, None], keep_score[:, None], keep_box],
                    axis=-1))
            num_per_img += len(keep_idx)

        bbox_num.append(num_per_img)

    return np.concatenate(bboxes, axis=0), np.array(bbox_num)


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--image_file or --image_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


def predict_image(infer_config, predictor, img_list):
    # load preprocess transforms
    transforms = Compose(infer_config['Preprocess'])
    # predict image
    for img_path in img_list:
        inputs = transforms(img_path)
        inputs_name = [var.name for var in predictor.get_inputs()]
        inputs = {k: inputs[k][None, ] for k in inputs_name}

        outputs = predictor.run(output_names=None, input_feed=inputs)

        bboxes, bbox_num = multiclass_nms_rotated(
            np.array(outputs[0]), np.array(outputs[1]))
        print("ONNXRuntime predict: ")
        for bbox in bboxes:
            if bbox[0] > -1 and bbox[1] > infer_config['draw_threshold']:
                print(f"{int(bbox[0])} {bbox[1]} "
                      f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}"
                      f"{bbox[6]} {bbox[7]} {bbox[8]} {bbox[9]}")


def parse_args():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--infer_cfg", type=str, help="infer_cfg.yml")
    parser.add_argument(
        '--onnx_file',
        type=str,
        default="model.onnx",
        help="onnx model file path")
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--image_file", type=str)
    return parser.parse_args()


if __name__ == '__main__':
    FLAGS = parse_args()
    # load image list
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    # load predictor
    predictor = InferenceSession(FLAGS.onnx_file)
    # load infer config
    with open(FLAGS.infer_cfg) as f:
        infer_config = yaml.safe_load(f)

    predict_image(infer_config, predictor, img_list)