test_detection.py 7.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16 17 18
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
C
chengduoZH 已提交
19
import unittest
20 21


22
class TestDetection(unittest.TestCase):
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def test_detection_output(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(
                name='target_box',
                shape=[20, 4],
                append_batch_size=False,
                dtype='float32')
            scores = layers.data(
                name='scores',
                shape=[2, 20, 10],
                append_batch_size=False,
                dtype='float32')
            out = layers.detection_output(
                scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
            self.assertIsNotNone(out)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            self.assertEqual(out.shape[-1], 6)
        print(str(program))

    def test_detection_api(self):
        program = Program()
        with program_guard(program):
            x = layers.data(name='x', shape=[4], dtype='float32')
            y = layers.data(name='y', shape=[4], dtype='float32')
            z = layers.data(name='z', shape=[4], dtype='float32', lod_level=1)
            iou = layers.iou_similarity(x=x, y=y)
            bcoder = layers.box_coder(
                prior_box=x,
                prior_box_var=y,
                target_box=z,
                code_type='encode_center_size')
            self.assertIsNotNone(iou)
            self.assertIsNotNone(bcoder)

            matched_indices, matched_dist = layers.bipartite_match(iou)
            self.assertIsNotNone(matched_indices)
            self.assertIsNotNone(matched_dist)

            gt = layers.data(
                name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

            gt2 = layers.data(
                name='gt2', shape=[10, 4], dtype='float32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                gt2, matched_indices, mismatch_value=0)
            self.assertIsNotNone(trg)
            self.assertIsNotNone(trg_weight)

        print(str(program))

    def test_ssd_loss(self):
        program = Program()
        with program_guard(program):
            pb = layers.data(
                name='prior_box',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            pbv = layers.data(
                name='prior_box_var',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32')
            loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
            scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
            gt_box = layers.data(
                name='gt_box', shape=[4], lod_level=1, dtype='float32')
            gt_label = layers.data(
                name='gt_label', shape=[1], lod_level=1, dtype='int32')
            loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
            self.assertIsNotNone(loss)
            self.assertEqual(loss.shape[-1], 1)
109 110 111
        print(str(program))


C
chengduoZH 已提交
112 113
class TestMultiBoxHead(unittest.TestCase):
    def test_multi_box_head(self):
114
        data_shape = [3, 224, 224]
C
chengduoZH 已提交
115
        mbox_locs, mbox_confs, box, var = self.multi_box_head_output(data_shape)
116 117 118 119

        assert len(box.shape) == 2
        assert box.shape == var.shape
        assert box.shape[1] == 4
C
chengduoZH 已提交
120

C
chengduoZH 已提交
121 122 123 124
        for loc, conf in zip(mbox_locs, mbox_confs):
            assert loc.shape[1:3] == conf.shape[1:3]

    def multi_box_head_output(self, data_shape):
C
chengduoZH 已提交
125 126
        images = fluid.layers.data(
            name='pixel', shape=data_shape, dtype='float32')
127 128 129 130 131
        conv1 = fluid.layers.conv2d(images, 3, 3, 2)
        conv2 = fluid.layers.conv2d(conv1, 3, 3, 2)
        conv3 = fluid.layers.conv2d(conv2, 3, 3, 2)
        conv4 = fluid.layers.conv2d(conv3, 3, 3, 2)
        conv5 = fluid.layers.conv2d(conv4, 3, 3, 2)
C
chengduoZH 已提交
132

C
chengduoZH 已提交
133
        mbox_locs, mbox_confs, box, var = layers.multi_box_head(
C
chengduoZH 已提交
134 135
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
C
chengduoZH 已提交
136
            num_classes=21,
C
chengduoZH 已提交
137 138 139 140 141 142 143
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
144

C
chengduoZH 已提交
145
        return mbox_locs, mbox_confs, box, var
C
chengduoZH 已提交
146 147


148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
class TestDetectionMAP(unittest.TestCase):
    def test_detection_map(self):
        program = Program()
        with program_guard(program):
            detect_res = layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out, accum_pos_count_out, accum_true_pos_out, accum_false_pos_out = layers.detection_map(
                detect_res=detect_res, label=label)
            self.assertIsNotNone(map_out)
            self.assertIsNotNone(accum_pos_count_out)
            self.assertIsNotNone(accum_true_pos_out)
            self.assertIsNotNone(accum_false_pos_out)
            self.assertEqual(map_out.shape, (1, ))
            map_out, accum_pos_count_out2, accum_true_pos_out2, accum_false_pos_out2 = layers.detection_map(
                detect_res=detect_res, label=label)
            self.assertIsNotNone(map_out)
            self.assertIsNotNone(accum_pos_count_out2)
            self.assertIsNotNone(accum_true_pos_out2)
            self.assertIsNotNone(accum_false_pos_out2)
            self.assertEqual(map_out.shape, (1, ))
            self.assertEqual(accum_pos_count_out.shape,
                             accum_pos_count_out2.shape)
            self.assertEqual(accum_true_pos_out.shape,
                             accum_true_pos_out2.shape)
            self.assertEqual(accum_false_pos_out.shape,
                             accum_false_pos_out2.shape)
        print(str(program))


186 187
if __name__ == '__main__':
    unittest.main()