prelu_op_plugin.cu 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <stdio.h>
#include <cassert>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {

static const int CUDA_NUM_THREADS = 1024;
static const int CUDA_MAX_NUM_BLOCKS = 65535;
inline static int GET_NUM_BLOCKS(const int N) {
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

__global__ void PReluChannelWiseKernel(const float *input, const float *alpha,
                                       float *output, int channel,
                                       size_t spatial_size) {
  size_t offset = blockIdx.x * spatial_size;
  const float *in = input + offset;
  float *out = output + offset;
  float scale = alpha[blockIdx.x % channel];

  for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
    float x = in[i];
    out[i] = (x > 0) ? x : scale * x;
  }
}

__global__ void PReluElementWiseKernel(const float *input, const float *alpha,
                                       float *output, size_t spatial_size) {
  size_t offset = blockIdx.x * spatial_size;
  const float *in = input + offset;
  const float *scale = alpha + offset;
  float *out = output + offset;

  for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
    float x = in[i];
    out[i] = (x > 0) ? x : scale[i] * x;
  }
}

__global__ void PReluScalarKernel(const float *input, const float *alpha,
                                  float *output, size_t spatial_size) {
  size_t offset = blockIdx.x * spatial_size;
  const float *in = input + offset;
  float scale = *alpha;
  float *out = output + offset;

  for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
    float x = in[i];
    out[i] = (x > 0) ? x : scale * x;
  }
}

static inline void PReluChannelWise(cudaStream_t stream, const float *input,
                                    const float *alpha, float *output,
                                    int batch_size,
                                    const nvinfer1::Dims &dims) {
  size_t unroll = batch_size * dims.d[0];
  size_t spatial_size = dims.d[1] * dims.d[2];
  CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
  PReluChannelWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
      input, alpha, output, dims.d[0], spatial_size);
}

static inline void PReluElementWise(cudaStream_t stream, const float *input,
                                    const float *alpha, float *output,
                                    int batch_size,
                                    const nvinfer1::Dims &dims) {
  size_t unroll = batch_size * dims.d[0];
  size_t spatial_size = dims.d[1] * dims.d[2];
  CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
  PReluElementWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
      input, alpha, output, spatial_size);
}

static inline void PReluScalar(cudaStream_t stream, const float *input,
                               const float *alpha, float *output,
                               int batch_size, const nvinfer1::Dims &dims) {
  size_t unroll = batch_size * dims.d[0];
  size_t spatial_size = dims.d[1] * dims.d[2];
  CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
  PReluScalarKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
      input, alpha, output, spatial_size);
}

nvinfer1::Dims PReluPlugin::getOutputDimensions(int index,
                                                const nvinfer1::Dims *inputDims,
                                                int nbInputs) {
  assert(nbInputs == 1);
  assert(index < this->getNbOutputs());
  nvinfer1::Dims const &input_dims = inputDims[0];
  nvinfer1::Dims output_dims = input_dims;
  return output_dims;
}

int PReluPlugin::initialize() {
  nvinfer1::Weights &alpha = cuda_alpha_.get();
  alpha.type = alpha_.get().type;
  alpha.count = alpha_.get().count;

  CHECK_EQ(cudaMalloc(&alpha.values, alpha.count * sizeof(float)), cudaSuccess);
  CHECK_EQ(cudaMemcpy(const_cast<void *>(alpha.values), alpha_.get().values,
                      alpha.count * sizeof(float), cudaMemcpyHostToDevice),
           cudaSuccess);
  return 0;
}

int PReluPlugin::enqueue(int batchSize, const void *const *inputs,
                         void **outputs, void *workspace, cudaStream_t stream) {
  // input dims is CHW.
  const auto &input_dims = this->getInputDims(0);
  const float *input = reinterpret_cast<const float *>(inputs[0]);
  const float *alpha =
      reinterpret_cast<const float *>(cuda_alpha_.get().values);
  float *output = reinterpret_cast<float **>(outputs)[0];
  if (mode_ == "channel") {
    PReluChannelWise(stream, input, alpha, output, batchSize, input_dims);
  } else if (mode_ == "element") {
    PReluElementWise(stream, input, alpha, output, batchSize, input_dims);
  } else {
    PReluScalar(stream, input, alpha, output, batchSize, input_dims);
  }
  return cudaGetLastError() != cudaSuccess;
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle