x2coco.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#!/usr/bin/env python
# coding: utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import glob
import json
import os
import os.path as osp
import sys
import shutil

import numpy as np
import PIL.ImageDraw


class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)


def getbbox(self, points):
    polygons = points
    mask = self.polygons_to_mask([self.height, self.width], polygons)
    return self.mask2box(mask)


S
SunAhong1993 已提交
47
def images_labelme(data, num):
48 49 50 51 52 53 54
    image = {}
    image['height'] = data['imageHeight']
    image['width'] = data['imageWidth']
    image['id'] = num + 1
    image['file_name'] = data['imagePath'].split('/')[-1]
    return image

S
SunAhong1993 已提交
55 56 57 58 59 60 61 62
def images_cityscape(data, num, img_file):
    image = {}
    image['height'] = data['imgHeight']
    image['width'] = data['imgWidth']
    image['id'] = num + 1
    image['file_name'] = img_file
    return image 

63 64 65 66 67 68 69 70 71

def categories(label, labels_list):
    category = {}
    category['supercategory'] = 'component'
    category['id'] = len(labels_list) + 1
    category['name'] = label
    return category


S
SunAhong1993 已提交
72
def annotations_rectangle(points, label, image_num, object_num, label_to_num):
73 74 75 76 77 78
    annotation = {}
    seg_points = np.asarray(points).copy()
    seg_points[1, :] = np.asarray(points)[2, :]
    seg_points[2, :] = np.asarray(points)[1, :]
    annotation['segmentation'] = [list(seg_points.flatten())]
    annotation['iscrowd'] = 0
S
SunAhong1993 已提交
79
    annotation['image_id'] = image_num + 1
80 81 82 83 84 85 86
    annotation['bbox'] = list(
        map(float, [
            points[0][0], points[0][1], points[1][0] - points[0][0], points[1][
                1] - points[0][1]
        ]))
    annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
    annotation['category_id'] = label_to_num[label]
S
SunAhong1993 已提交
87
    annotation['id'] = object_num + 1
88 89 90
    return annotation


S
SunAhong1993 已提交
91
def annotations_polygon(height, width, points, label, image_num, object_num, label_to_num):
92 93 94
    annotation = {}
    annotation['segmentation'] = [list(np.asarray(points).flatten())]
    annotation['iscrowd'] = 0
S
SunAhong1993 已提交
95
    annotation['image_id'] = image_num + 1
96 97 98
    annotation['bbox'] = list(map(float, get_bbox(height, width, points)))
    annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
    annotation['category_id'] = label_to_num[label]
S
SunAhong1993 已提交
99
    annotation['id'] = object_num + 1
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    return annotation


def get_bbox(height, width, points):
    polygons = points
    mask = np.zeros([height, width], dtype=np.uint8)
    mask = PIL.Image.fromarray(mask)
    xy = list(map(tuple, polygons))
    PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
    mask = np.array(mask, dtype=bool)
    index = np.argwhere(mask == 1)
    rows = index[:, 0]
    clos = index[:, 1]
    left_top_r = np.min(rows)
    left_top_c = np.min(clos)
    right_bottom_r = np.max(rows)
    right_bottom_c = np.max(clos)
    return [
        left_top_c, left_top_r, right_bottom_c - left_top_c,
        right_bottom_r - left_top_r
    ]


S
SunAhong1993 已提交
123
def deal_json(ds_type, img_path, json_path):
124 125 126 127 128 129
    data_coco = {}
    label_to_num = {}
    images_list = []
    categories_list = []
    annotations_list = []
    labels_list = []
S
SunAhong1993 已提交
130
    image_num = -1
S
SunAhong1993 已提交
131
    object_num = -1
132 133
    for img_file in os.listdir(img_path):
        img_label = img_file.split('.')[0]
S
SunAhong1993 已提交
134 135
        if img_file.split('.')[-1] not in ['bmp', 'jpg', 'jpeg', 'png', 'JPEG', 'JPG', 'PNG']:
            continue
136 137
        label_file = osp.join(json_path, img_label + '.json')
        print('Generating dataset from:', label_file)
S
SunAhong1993 已提交
138
        image_num = image_num + 1
139 140
        with open(label_file) as f:
            data = json.load(f)
S
SunAhong1993 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
            if ds_type == 'labelme':
                images_list.append(images_labelme(data, image_num))
            elif ds_type == 'cityscape':
                images_list.append(images_cityscape(data, image_num, img_file)) 
            if ds_type == 'labelme':
                for shapes in data['shapes']:
                    object_num = object_num + 1
                    label = shapes['label']
                    if label not in labels_list:
                        categories_list.append(categories(label, labels_list))
                        labels_list.append(label)
                        label_to_num[label] = len(labels_list)
                    points = shapes['points']
                    p_type = shapes['shape_type']
                    if p_type == 'polygon':
                        annotations_list.append(
                            annotations_polygon(data['imageHeight'], data[
                                'imageWidth'], points, label, image_num, object_num, label_to_num))
159

S
SunAhong1993 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173
                    if p_type == 'rectangle':
                        points.append([points[0][0], points[1][1]])
                        points.append([points[1][0], points[0][1]])
                        annotations_list.append(
                            annotations_rectangle(points, label, image_num, object_num, label_to_num))
            elif ds_type == 'cityscape':
                for shapes in data['objects']:
                    object_num = object_num + 1
                    label = shapes['label']
                    if label not in labels_list:
                        categories_list.append(categories(label, labels_list))
                        labels_list.append(label)
                        label_to_num[label] = len(labels_list)
                    points = shapes['polygon']
174
                    annotations_list.append(
S
SunAhong1993 已提交
175 176
                        annotations_polygon(data['imgHeight'], data[
                            'imgWidth'], points, label, image_num, object_num, label_to_num))
177 178 179 180 181 182 183 184 185
    data_coco['images'] = images_list
    data_coco['categories'] = categories_list
    data_coco['annotations'] = annotations_list
    return data_coco


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
S
SunAhong1993 已提交
186
    parser.add_argument('--dataset_type', help='the type of dataset')
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    parser.add_argument('--json_input_dir', help='input annotated directory')
    parser.add_argument('--image_input_dir', help='image directory')
    parser.add_argument(
        '--output_dir', help='output dataset directory', default='../../../')
    parser.add_argument(
        '--train_proportion',
        help='the proportion of train dataset',
        type=float,
        default=1.0)
    parser.add_argument(
        '--val_proportion',
        help='the proportion of validation dataset',
        type=float,
        default=0.0)
    parser.add_argument(
        '--test_proportion',
        help='the proportion of test dataset',
        type=float,
        default=0.0)
    args = parser.parse_args()
S
SunAhong1993 已提交
207 208 209 210 211
    try:
        assert args.dataset_type in ['labelme', 'cityscape']
    except AssertionError as e:
        print('Now only support the cityscape dataset and labelme dataset!!')
        os._exit(0)
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    try:
        assert os.path.exists(args.json_input_dir)
    except AssertionError as e:
        print('The json folder does not exist!')
        os._exit(0)
    try:
        assert os.path.exists(args.image_input_dir)
    except AssertionError as e:
        print('The image folder does not exist!')
        os._exit(0)
    try:
        assert args.train_proportion + args.val_proportion + args.test_proportion == 1.0
    except AssertionError as e:
        print(
            'The sum of pqoportion of training, validation and test datase must be 1!'
        )
        os._exit(0)

    # Allocate the dataset.
    total_num = len(glob.glob(osp.join(args.json_input_dir, '*.json')))
    if args.train_proportion != 0:
        train_num = int(total_num * args.train_proportion)
        os.makedirs(args.output_dir + '/train')
    else:
        train_num = 0
    if args.val_proportion == 0.0:
        val_num = 0
        test_num = total_num - train_num
        if args.test_proportion != 0.0:
            os.makedirs(args.output_dir + '/test')
    else:
        val_num = int(total_num * args.val_proportion)
        test_num = total_num - train_num - val_num
        os.makedirs(args.output_dir + '/val')
        if args.test_proportion != 0.0:
            os.makedirs(args.output_dir + '/test')
    count = 1
    for img_name in os.listdir(args.image_input_dir):
        if count <= train_num:
            shutil.copyfile(
                osp.join(args.image_input_dir, img_name),
                osp.join(args.output_dir + '/train/', img_name))
        else:
            if count <= train_num + val_num:
                shutil.copyfile(
                    osp.join(args.image_input_dir, img_name),
                    osp.join(args.output_dir + '/val/', img_name))
            else:
                shutil.copyfile(
                    osp.join(args.image_input_dir, img_name),
                    osp.join(args.output_dir + '/test/', img_name))
        count = count + 1

    # Deal with the json files.
    if not os.path.exists(args.output_dir + '/annotations'):
        os.makedirs(args.output_dir + '/annotations')
    if args.train_proportion != 0:
S
SunAhong1993 已提交
269 270
        train_data_coco = deal_json(args.dataset_type,
                                    args.output_dir + '/train',
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                                    args.json_input_dir)
        train_json_path = osp.join(args.output_dir + '/annotations',
                                   'instance_train.json')
        json.dump(
            train_data_coco,
            open(train_json_path, 'w'),
            indent=4,
            cls=MyEncoder)
    if args.val_proportion != 0:
        val_data_coco = deal_json(args.output_dir + '/val', args.json_input_dir)
        val_json_path = osp.join(args.output_dir + '/annotations',
                                 'instance_val.json')
        json.dump(
            val_data_coco, open(val_json_path, 'w'), indent=4, cls=MyEncoder)
    if args.test_proportion != 0:
        test_data_coco = deal_json(args.output_dir + '/test',
                                   args.json_input_dir)
        test_json_path = osp.join(args.output_dir + '/annotations',
                                  'instance_test.json')
        json.dump(
            test_data_coco, open(test_json_path, 'w'), indent=4, cls=MyEncoder)

if __name__ == '__main__':
    main()