resnet.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
25
from paddle.fluid.initializer import Constant
26 27 28 29

from ppdet.core.workspace import register, serializable
from numbers import Integral

Y
Yang Zhang 已提交
30
from .nonlocal_helper import add_space_nonlocal
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
from .name_adapter import NameAdapter

__all__ = ['ResNet', 'ResNetC5']


@register
@serializable
class ResNet(object):
    """
    Residual Network, see https://arxiv.org/abs/1512.03385
    Args:
        depth (int): ResNet depth, should be 18, 34, 50, 101, 152.
        freeze_at (int): freeze the backbone at which stage
        norm_type (str): normalization type, 'bn'/'sync_bn'/'affine_channel'
        freeze_norm (bool): freeze normalization layers
        norm_decay (float): weight decay for normalization layer weights
        variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
        feature_maps (list): index of stages whose feature maps are returned
49
        dcn_v2_stages (list): index of stages who select deformable conv v2
50
        nonlocal_stages (list): index of stages who select nonlocal networks
51
    """
52
    __shared__ = ['norm_type', 'freeze_norm', 'weight_prefix_name']
53 54 55 56 57 58 59 60

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='affine_channel',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
61
                 feature_maps=[2, 3, 4, 5],
62
                 dcn_v2_stages=[],
63 64
                 weight_prefix_name='',
                 nonlocal_stages=[]):
65 66 67 68 69
        super(ResNet, self).__init__()

        if isinstance(feature_maps, Integral):
            feature_maps = [feature_maps]

70 71
        assert depth in [18, 34, 50, 101, 152, 200], \
            "depth {} not in [18, 34, 50, 101, 152, 200]"
72 73 74 75
        assert variant in ['a', 'b', 'c', 'd'], "invalid ResNet variant"
        assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
        assert len(feature_maps) > 0, "need one or more feature maps"
        assert norm_type in ['bn', 'sync_bn', 'affine_channel']
76 77
        assert not (len(nonlocal_stages)>0 and depth<50), \
                    "non-local is not supported for resnet18 or resnet34"
78 79 80 81 82 83 84 85 86

        self.depth = depth
        self.freeze_at = freeze_at
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.freeze_norm = freeze_norm
        self.variant = variant
        self._model_type = 'ResNet'
        self.feature_maps = feature_maps
87
        self.dcn_v2_stages = dcn_v2_stages
88 89 90 91 92
        self.depth_cfg = {
            18: ([2, 2, 2, 2], self.basicblock),
            34: ([3, 4, 6, 3], self.basicblock),
            50: ([3, 4, 6, 3], self.bottleneck),
            101: ([3, 4, 23, 3], self.bottleneck),
93 94
            152: ([3, 8, 36, 3], self.bottleneck),
            200: ([3, 12, 48, 3], self.bottleneck),
95 96 97 98
        }
        self.stage_filters = [64, 128, 256, 512]
        self._c1_out_chan_num = 64
        self.na = NameAdapter(self)
99
        self.prefix_name = weight_prefix_name
100 101 102 103 104 105 106 107
        
        self.nonlocal_stages = nonlocal_stages
        self.nonlocal_mod_cfg = {
            50  : 2,
            101 : 5,
            152 : 8,
            200 : 12,
        }
108

109 110 111 112 113 114 115
    def _conv_offset(self,
                     input,
                     filter_size,
                     stride,
                     padding,
                     act=None,
                     name=None):
116
        out_channel = filter_size * filter_size * 3
117 118
        out = fluid.layers.conv2d(
            input,
119 120 121 122
            num_filters=out_channel,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
123 124 125 126
            param_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".w_0"),
            bias_attr=ParamAttr(
                initializer=Constant(0.0), name=name + ".b_0"),
127 128 129 130
            act=act,
            name=name)
        return out

131 132 133 134 135 136 137
    def _conv_norm(self,
                   input,
                   num_filters,
                   filter_size,
                   stride=1,
                   groups=1,
                   act=None,
138 139
                   name=None,
                   dcn_v2=False):
140
        _name = self.prefix_name + name if self.prefix_name != '' else name
141 142 143 144 145 146 147 148 149
        if not dcn_v2:
            conv = fluid.layers.conv2d(
                input=input,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                act=None,
150
                param_attr=ParamAttr(name=_name + "_weights"),
151
                bias_attr=False,
152
                name=_name + '.conv2d.output.1')
153 154 155 156 157 158 159 160
        else:
            # select deformable conv"
            offset_mask = self._conv_offset(
                input=input,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                act=None,
161
                name=_name + "_conv_offset")
162 163
            offset_channel = filter_size**2 * 2
            mask_channel = filter_size**2
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            offset, mask = fluid.layers.split(
                input=offset_mask,
                num_or_sections=[offset_channel, mask_channel],
                dim=1)
            mask = fluid.layers.sigmoid(mask)
            conv = fluid.layers.deformable_conv(
                input=input,
                offset=offset,
                mask=mask,
                num_filters=num_filters,
                filter_size=filter_size,
                stride=stride,
                padding=(filter_size - 1) // 2,
                groups=groups,
                deformable_groups=1,
                im2col_step=1,
180
                param_attr=ParamAttr(name=_name + "_weights"),
181
                bias_attr=False,
182
                name=_name + ".conv2d.output.1")
183 184

        bn_name = self.na.fix_conv_norm_name(name)
185
        bn_name = self.prefix_name + bn_name if self.prefix_name != '' else bn_name
186 187 188 189 190 191 192 193 194 195 196 197 198

        norm_lr = 0. if self.freeze_norm else 1.
        norm_decay = self.norm_decay
        pattr = ParamAttr(
            name=bn_name + '_scale',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))
        battr = ParamAttr(
            name=bn_name + '_offset',
            learning_rate=norm_lr,
            regularizer=L2Decay(norm_decay))

        if self.norm_type in ['bn', 'sync_bn']:
199
            global_stats = True if self.freeze_norm else False
200 201 202 203 204 205 206
            out = fluid.layers.batch_norm(
                input=conv,
                act=act,
                name=bn_name + '.output.1',
                param_attr=pattr,
                bias_attr=battr,
                moving_mean_name=bn_name + '_mean',
207 208
                moving_variance_name=bn_name + '_variance',
                use_global_stats=global_stats)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            scale = fluid.framework._get_var(pattr.name)
            bias = fluid.framework._get_var(battr.name)
        elif self.norm_type == 'affine_channel':
            scale = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=pattr,
                default_initializer=fluid.initializer.Constant(1.))
            bias = fluid.layers.create_parameter(
                shape=[conv.shape[1]],
                dtype=conv.dtype,
                attr=battr,
                default_initializer=fluid.initializer.Constant(0.))
            out = fluid.layers.affine_channel(
                x=conv, scale=scale, bias=bias, act=act)
        if self.freeze_norm:
            scale.stop_gradient = True
            bias.stop_gradient = True
        return out

    def _shortcut(self, input, ch_out, stride, is_first, name):
        max_pooling_in_short_cut = self.variant == 'd'
        ch_in = input.shape[1]
        # the naming rule is same as pretrained weight
        name = self.na.fix_shortcut_name(name)
234
        std_senet = getattr(self, 'std_senet', False)
235
        if ch_in != ch_out or stride != 1 or (self.depth < 50 and is_first):
236 237 238 239 240
            if std_senet:
                if is_first:
                    return self._conv_norm(input, ch_out, 1, stride, name=name)
                else:
                    return self._conv_norm(input, ch_out, 3, stride, name=name)
241 242 243 244 245 246 247 248 249 250 251 252 253
            if max_pooling_in_short_cut and not is_first:
                input = fluid.layers.pool2d(
                    input=input,
                    pool_size=2,
                    pool_stride=2,
                    pool_padding=0,
                    ceil_mode=True,
                    pool_type='avg')
                return self._conv_norm(input, ch_out, 1, 1, name=name)
            return self._conv_norm(input, ch_out, 1, stride, name=name)
        else:
            return input

254 255 256 257 258 259 260
    def bottleneck(self,
                   input,
                   num_filters,
                   stride,
                   is_first,
                   name,
                   dcn_v2=False):
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        if self.variant == 'a':
            stride1, stride2 = stride, 1
        else:
            stride1, stride2 = 1, stride

        # ResNeXt
        groups = getattr(self, 'groups', 1)
        group_width = getattr(self, 'group_width', -1)
        if groups == 1:
            expand = 4
        elif (groups * group_width) == 256:
            expand = 1
        else:  # FIXME hard code for now, handles 32x4d, 64x4d and 32x8d
            num_filters = num_filters // 2
            expand = 2

        conv_name1, conv_name2, conv_name3, \
            shortcut_name = self.na.fix_bottleneck_name(name)
279 280 281 282 283 284 285 286 287 288 289
        std_senet = getattr(self, 'std_senet', False)
        if std_senet:
            conv_def = [
                [int(num_filters / 2), 1, stride1, 'relu', 1, conv_name1],
                [num_filters, 3, stride2, 'relu', groups, conv_name2],
                [num_filters * expand, 1, 1, None, 1, conv_name3]
            ]
        else:
            conv_def = [[num_filters, 1, stride1, 'relu', 1, conv_name1],
                        [num_filters, 3, stride2, 'relu', groups, conv_name2],
                        [num_filters * expand, 1, 1, None, 1, conv_name3]]
290 291

        residual = input
292
        for i, (c, k, s, act, g, _name) in enumerate(conv_def):
293 294 295 296 297 298 299
            residual = self._conv_norm(
                input=residual,
                num_filters=c,
                filter_size=k,
                stride=s,
                act=act,
                groups=g,
300
                name=_name,
301
                dcn_v2=(i == 1 and dcn_v2))
302 303 304 305 306 307 308 309 310 311 312 313 314
        short = self._shortcut(
            input,
            num_filters * expand,
            stride,
            is_first=is_first,
            name=shortcut_name)
        # Squeeze-and-Excitation
        if callable(getattr(self, '_squeeze_excitation', None)):
            residual = self._squeeze_excitation(
                input=residual, num_channels=num_filters, name='fc' + name)
        return fluid.layers.elementwise_add(
            x=short, y=residual, act='relu', name=name + ".add.output.5")

315 316 317 318 319 320 321
    def basicblock(self,
                   input,
                   num_filters,
                   stride,
                   is_first,
                   name,
                   dcn_v2=False):
322
        assert dcn_v2 is False, "Not implemented yet."
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        conv0 = self._conv_norm(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self._conv_norm(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self._shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

    def layer_warp(self, input, stage_num):
        """
        Args:
            input (Variable): input variable.
            stage_num (int): the stage number, should be 2, 3, 4, 5

        Returns:
            The last variable in endpoint-th stage.
        """
        assert stage_num in [2, 3, 4, 5]

        stages, block_func = self.depth_cfg[self.depth]
        count = stages[stage_num - 2]

        ch_out = self.stage_filters[stage_num - 2]
        is_first = False if stage_num != 2 else True
356
        dcn_v2 = True if stage_num in self.dcn_v2_stages else False
357 358 359 360 361
        
        nonlocal_mod = 1000
        if stage_num in self.nonlocal_stages:
            nonlocal_mod = self.nonlocal_mod_cfg[self.depth] if stage_num==4 else 2
        
362 363 364 365 366 367 368 369 370 371 372 373
        # Make the layer name and parameter name consistent
        # with ImageNet pre-trained model
        conv = input
        for i in range(count):
            conv_name = self.na.fix_layer_warp_name(stage_num, count, i)
            if self.depth < 50:
                is_first = True if i == 0 and stage_num == 2 else False
            conv = block_func(
                input=conv,
                num_filters=ch_out,
                stride=2 if i == 0 and stage_num != 2 else 1,
                is_first=is_first,
374 375
                name=conv_name,
                dcn_v2=dcn_v2)
376 377 378 379 380 381 382 383
            
            # add non local model
            dim_in = conv.shape[1]
            nonlocal_name = "nonlocal_conv{}".format( stage_num )
            if i % nonlocal_mod == nonlocal_mod - 1:
                conv = add_space_nonlocal(
                    conv, dim_in, dim_in,
                    nonlocal_name + '_{}'.format(i), int(dim_in / 2) )
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        return conv

    def c1_stage(self, input):
        out_chan = self._c1_out_chan_num

        conv1_name = self.na.fix_c1_stage_name()

        if self.variant in ['c', 'd']:
            conv_def = [
                [out_chan // 2, 3, 2, "conv1_1"],
                [out_chan // 2, 3, 1, "conv1_2"],
                [out_chan, 3, 1, "conv1_3"],
            ]
        else:
            conv_def = [[out_chan, 7, 2, conv1_name]]

        for (c, k, s, _name) in conv_def:
            input = self._conv_norm(
                input=input,
                num_filters=c,
                filter_size=k,
                stride=s,
                act='relu',
                name=_name)

        output = fluid.layers.pool2d(
            input=input,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
        return output

    def __call__(self, input):
        assert isinstance(input, Variable)
        assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
            "feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)

        res_endpoints = []

        res = input
        feature_maps = self.feature_maps
        severed_head = getattr(self, 'severed_head', False)
        if not severed_head:
            res = self.c1_stage(res)
            feature_maps = range(2, max(self.feature_maps) + 1)

        for i in feature_maps:
            res = self.layer_warp(res, i)
            if i in self.feature_maps:
                res_endpoints.append(res)
            if self.freeze_at >= i:
                res.stop_gradient = True

        return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
                            for idx, feat in enumerate(res_endpoints)])


@register
@serializable
class ResNetC5(ResNet):
    __doc__ = ResNet.__doc__

    def __init__(self,
                 depth=50,
                 freeze_at=2,
                 norm_type='affine_channel',
                 freeze_norm=True,
                 norm_decay=0.,
                 variant='b',
454 455
                 feature_maps=[5],
                 weight_prefix_name=''):
456 457
        super(ResNetC5, self).__init__(depth, freeze_at, norm_type, freeze_norm,
                                       norm_decay, variant, feature_maps)
458
        self.severed_head = True