vechile_plate.py 24.1 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
from functools import reduce

import time
import cv2
import numpy as np
import math
import paddle

import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

from utils import Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, create_inputs
from vechile_plateutils import create_predictor, get_infer_gpuid, argsparser, get_rotate_crop_image
from vecplatepostprocess import build_post_process
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image, Resize_Mult32


class PlateDetector(object):
    def __init__(self, args):
        self.args = args
        self.det_algorithm = args.det_algorithm
        self.pre_process_list = {
            'Resize_Mult32': {
                'limit_side_len': args.det_limit_side_len,
                'limit_type': args.det_limit_type,
            },
            'NormalizeImage': {
                'mean': [0.485, 0.456, 0.406],
                'std': [0.229, 0.224, 0.225],
                'is_scale': True,
            },
            'Permute': {}
        }
        postprocess_params = {}
        postprocess_params['name'] = 'DBPostProcess'
        postprocess_params["thresh"] = 0.3
        postprocess_params["box_thresh"] = 0.6
        postprocess_params["max_candidates"] = 1000
        postprocess_params["unclip_ratio"] = 1.5
        postprocess_params["use_dilation"] = False
        postprocess_params["score_mode"] = "fast"

        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor(
            args, 'det')

        if args.run_benchmark:
            import auto_log
            pid = os.getpid()
            gpu_id = get_infer_gpuid()
            self.autolog = auto_log.AutoLogger(
                model_name="det",
                model_precision="fp32",
                batch_size=1,
                data_shape="dynamic",
                save_path=None,
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=gpu_id if args.device == "GPU" else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
                warmup=2, )

    def preprocess(self, image_list):
        preprocess_ops = []
        for op_type, new_op_info in self.pre_process_list.items():
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
            im, im_info = preprocess(im_path, preprocess_ops)
            input_im_lst.append(im)
            input_im_info_lst.append(im_info['im_shape'])

        return np.stack(input_im_lst, axis=0), input_im_info_lst

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def predict_image(self, img):
        st = time.time()

        if self.args.run_benchmark:
            self.autolog.times.start()

        img, shape_list = self.preprocess(img)
        if img is None:
            return None, 0
        # img = np.expand_dims(img, axis=0)
        # shape_list = np.expand_dims(shape_list, axis=0)
        # img = img.copy()

        if self.args.run_benchmark:
            self.autolog.times.stamp()

        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        if self.args.run_benchmark:
            self.autolog.times.stamp()

        preds = {}
        preds['maps'] = outputs[0]

        #self.predictor.try_shrink_memory()
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
        dt_boxes = self.filter_tag_det_res(dt_boxes, shape_list[0])

        if self.args.run_benchmark:
            self.autolog.times.end(stamp=True)
        et = time.time()
        return dt_boxes, et - st


class TextRecognizer(object):
    def __init__(self,
                 FLAGS,
                 input_shape=[3, 48, 320],
                 batch_size=8,
                 rec_algorithm="SVTR",
                 word_dict_path="rec_word_dict.txt",
                 use_gpu=True,
                 benchmark=False):
        self.rec_image_shape = input_shape
        self.rec_batch_num = batch_size
        self.rec_algorithm = rec_algorithm
        isuse_space_char = True

        postprocess_params = {
            'name': 'CTCLabelDecode',
            "character_dict_path": word_dict_path,
            "use_space_char": isuse_space_char
        }
        if self.rec_algorithm == "SRN":
            postprocess_params = {
                'name': 'SRNLabelDecode',
                "character_dict_path": word_dict_path,
                "use_space_char": isuse_space_char
            }
        elif self.rec_algorithm == "RARE":
            postprocess_params = {
                'name': 'AttnLabelDecode',
                "character_dict_path": word_dict_path,
                "use_space_char": isuse_space_char
            }
        elif self.rec_algorithm == 'NRTR':
            postprocess_params = {
                'name': 'NRTRLabelDecode',
                "character_dict_path": word_dict_path,
                "use_space_char": isuse_space_char
            }
        elif self.rec_algorithm == "SAR":
            postprocess_params = {
                'name': 'SARLabelDecode',
                "character_dict_path": word_dict_path,
                "use_space_char": isuse_space_char
            }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
            create_predictor(FLAGS, 'rec')
        self.benchmark = benchmark
        self.use_onnx = False
        if benchmark:
            import auto_log
            pid = os.getpid()
            gpu_id = get_infer_gpuid()
            self.autolog = auto_log.AutoLogger(
                model_name="rec",
                model_precision='fp32',
                batch_size=batch_size,
                data_shape="dynamic",
                save_path=None,  #save_log_path,
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=gpu_id if use_gpu else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
                warmup=0)

    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape
        if self.rec_algorithm == 'NRTR':
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            # return padding_im
            image_pil = Image.fromarray(np.uint8(img))
            img = image_pil.resize([100, 32], Image.ANTIALIAS)
            img = np.array(img)
            norm_img = np.expand_dims(img, -1)
            norm_img = norm_img.transpose((2, 0, 1))
            return norm_img.astype(np.float32) / 128. - 1.

        assert imgC == img.shape[2]
        imgW = int((imgH * max_wh_ratio))
        if self.use_onnx:
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        if self.rec_algorithm == 'RARE':
            if resized_w > self.rec_image_shape[2]:
                resized_w = self.rec_image_shape[2]
            imgW = self.rec_image_shape[2]
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def resize_norm_img_svtr(self, img, image_shape):

        imgC, imgH, imgW = image_shape
        resized_image = cv2.resize(
            img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        return resized_image

    def resize_norm_img_srn(self, img, image_shape):
        imgC, imgH, imgW = image_shape

        img_black = np.zeros((imgH, imgW))
        im_hei = img.shape[0]
        im_wid = img.shape[1]

        if im_wid <= im_hei * 1:
            img_new = cv2.resize(img, (imgH * 1, imgH))
        elif im_wid <= im_hei * 2:
            img_new = cv2.resize(img, (imgH * 2, imgH))
        elif im_wid <= im_hei * 3:
            img_new = cv2.resize(img, (imgH * 3, imgH))
        else:
            img_new = cv2.resize(img, (imgW, imgH))

        img_np = np.asarray(img_new)
        img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
        img_black[:, 0:img_np.shape[1]] = img_np
        img_black = img_black[:, :, np.newaxis]

        row, col, c = img_black.shape
        c = 1

        return np.reshape(img_black, (c, row, col)).astype(np.float32)

    def srn_other_inputs(self, image_shape, num_heads, max_text_length):

        imgC, imgH, imgW = image_shape
        feature_dim = int((imgH / 8) * (imgW / 8))

        encoder_word_pos = np.array(range(0, feature_dim)).reshape(
            (feature_dim, 1)).astype('int64')
        gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
            (max_text_length, 1)).astype('int64')

        gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
        gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias1 = np.tile(
            gsrm_slf_attn_bias1,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
            [-1, 1, max_text_length, max_text_length])
        gsrm_slf_attn_bias2 = np.tile(
            gsrm_slf_attn_bias2,
            [1, num_heads, 1, 1]).astype('float32') * [-1e9]

        encoder_word_pos = encoder_word_pos[np.newaxis, :]
        gsrm_word_pos = gsrm_word_pos[np.newaxis, :]

        return [
            encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
            gsrm_slf_attn_bias2
        ]

    def process_image_srn(self, img, image_shape, num_heads, max_text_length):
        norm_img = self.resize_norm_img_srn(img, image_shape)
        norm_img = norm_img[np.newaxis, :]

        [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
            self.srn_other_inputs(image_shape, num_heads, max_text_length)

        gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
        gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
        encoder_word_pos = encoder_word_pos.astype(np.int64)
        gsrm_word_pos = gsrm_word_pos.astype(np.int64)

        return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
                gsrm_slf_attn_bias2)

    def resize_norm_img_sar(self, img, image_shape,
                            width_downsample_ratio=0.25):
        imgC, imgH, imgW_min, imgW_max = image_shape
        h = img.shape[0]
        w = img.shape[1]
        valid_ratio = 1.0
        # make sure new_width is an integral multiple of width_divisor.
        width_divisor = int(1 / width_downsample_ratio)
        # resize
        ratio = w / float(h)
        resize_w = math.ceil(imgH * ratio)
        if resize_w % width_divisor != 0:
            resize_w = round(resize_w / width_divisor) * width_divisor
        if imgW_min is not None:
            resize_w = max(imgW_min, resize_w)
        if imgW_max is not None:
            valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
            resize_w = min(imgW_max, resize_w)
        resized_image = cv2.resize(img, (resize_w, imgH))
        resized_image = resized_image.astype('float32')
        # norm 
        if image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        resize_shape = resized_image.shape
        padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
        padding_im[:, :, 0:resize_w] = resized_image
        pad_shape = padding_im.shape

        return padding_im, resize_shape, pad_shape, valid_ratio

    def __call__(self, img_list):
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the recognition process
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
        batch_num = self.rec_batch_num
        st = time.time()
        if self.benchmark:
            self.autolog.times.start()
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):

                if self.rec_algorithm == "SAR":
                    norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
                        img_list[indices[ino]], self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    valid_ratio = np.expand_dims(valid_ratio, axis=0)
                    valid_ratios = []
                    valid_ratios.append(valid_ratio)
                    norm_img_batch.append(norm_img)
                elif self.rec_algorithm == "SRN":
                    norm_img = self.process_image_srn(
                        img_list[indices[ino]], self.rec_image_shape, 8, 25)
                    encoder_word_pos_list = []
                    gsrm_word_pos_list = []
                    gsrm_slf_attn_bias1_list = []
                    gsrm_slf_attn_bias2_list = []
                    encoder_word_pos_list.append(norm_img[1])
                    gsrm_word_pos_list.append(norm_img[2])
                    gsrm_slf_attn_bias1_list.append(norm_img[3])
                    gsrm_slf_attn_bias2_list.append(norm_img[4])
                    norm_img_batch.append(norm_img[0])
                elif self.rec_algorithm == "SVTR":
                    norm_img = self.resize_norm_img_svtr(img_list[indices[ino]],
                                                         self.rec_image_shape)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
                else:
                    norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                    max_wh_ratio)
                    norm_img = norm_img[np.newaxis, :]
                    norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            if self.benchmark:
                self.autolog.times.stamp()

            if self.rec_algorithm == "SRN":
                encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
                gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
                gsrm_slf_attn_bias1_list = np.concatenate(
                    gsrm_slf_attn_bias1_list)
                gsrm_slf_attn_bias2_list = np.concatenate(
                    gsrm_slf_attn_bias2_list)

                inputs = [
                    norm_img_batch,
                    encoder_word_pos_list,
                    gsrm_word_pos_list,
                    gsrm_slf_attn_bias1_list,
                    gsrm_slf_attn_bias2_list,
                ]
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = {"predict": outputs[2]}
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = {"predict": outputs[2]}
            elif self.rec_algorithm == "SAR":
                valid_ratios = np.concatenate(valid_ratios)
                inputs = [
                    norm_img_batch,
                    valid_ratios,
                ]
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    input_names = self.predictor.get_input_names()
                    for i in range(len(input_names)):
                        input_tensor = self.predictor.get_input_handle(
                            input_names[i])
                        input_tensor.copy_from_cpu(inputs[i])
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    preds = outputs[0]
            else:
                if self.use_onnx:
                    input_dict = {}
                    input_dict[self.input_tensor.name] = norm_img_batch
                    outputs = self.predictor.run(self.output_tensors,
                                                 input_dict)
                    preds = outputs[0]
                else:
                    self.input_tensor.copy_from_cpu(norm_img_batch)
                    self.predictor.run()
                    outputs = []
                    for output_tensor in self.output_tensors:
                        output = output_tensor.copy_to_cpu()
                        outputs.append(output)
                    if self.benchmark:
                        self.autolog.times.stamp()
                    if len(outputs) != 1:
                        preds = outputs
                    else:
                        preds = outputs[0]
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
            if self.benchmark:
                self.autolog.times.end(stamp=True)
        return rec_res, time.time() - st


class PlateRecognizer(object):
    def __init__(self):
        self.batch_size = 8
        self.platedetector = PlateDetector(FLAGS)
        self.textrecognizer = TextRecognizer(
            FLAGS,
            input_shape=[3, 48, 320],
            batch_size=8,
            rec_algorithm="SVTR",
            word_dict_path="rec_word_dict.txt",
            use_gpu=True,
            benchmark=False)

    def get_platelicense(self, image_list):
        plate_text_list = []
        plateboxes, det_time = self.platedetector.predict_image(image_list)
        for idx, boxes_pcar in enumerate(plateboxes):
            plate_images = get_rotate_crop_image(image_list[idx], boxes_pcar)
            print(plate_images.shape)
            plate_texts = self.textrecognizer(plate_images)
            plate_text_list.append(plate_texts)
            import pdb
            pdb.set_trace()
        return results


def main():
    detector = PlateRecognizer()
    # predict from image
    if FLAGS.image_dir is None and FLAGS.image_file is not None:
        assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    for img in img_list:
        image = cv2.imread(img)
        results = detector.get_platelicense([image])
    if not FLAGS.run_benchmark:
        detector.det_times.info(average=True)
    else:
        mems = {
            'cpu_rss_mb': detector.cpu_mem / len(img_list),
            'gpu_rss_mb': detector.gpu_mem / len(img_list),
            'gpu_util': detector.gpu_util * 100 / len(img_list)
        }

        perf_info = detector.det_times.report(average=True)
        model_dir = FLAGS.model_dir
        mode = FLAGS.run_mode
        model_info = {
            'model_name': model_dir.strip('/').split('/')[-1],
            'precision': mode.split('_')[-1]
        }
        data_info = {
            'batch_size': FLAGS.batch_size,
            'shape': "dynamic_shape",
            'data_num': perf_info['img_num']
        }
        det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
                                       perf_info, mems)
        det_log('Attr')


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"

    main()