batch_norm_op.cu.cc 11.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/framework/data_layout.h"
Q
Qiao Longfei 已提交
17 18

#include <cfloat>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
27
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
28 29
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
30
template <typename T>
K
update  
Kexin Zhao 已提交
31
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
32

Q
QI JUN 已提交
33 34
void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout,
                  int *N, int *C, int *H, int *W, int *D) {
Q
Qiao Longfei 已提交
35
  *N = dims[0];
36 37 38 39 40 41
  if (dims.size() == 2) {
    *C = dims[1];
    *H = 1;
    *W = 1;
    *D = 1;
  } else {
Q
QI JUN 已提交
42 43
    *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
    *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1];
44
    *W = dims.size() > 3
Q
QI JUN 已提交
45
             ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2])
46 47
             : 1;
    *D = dims.size() > 4
Q
QI JUN 已提交
48
             ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3])
49 50
             : 1;
  }
Q
Qiao Longfei 已提交
51 52 53
}

template <typename T>
Q
QI JUN 已提交
54 55
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
56 57 58
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
59
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
60 61 62
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
Q
QI JUN 已提交
63 64 65
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
66 67 68 69 70

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
71 72
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
73
    int N, C, H, W, D;
Q
QI JUN 已提交
74
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

    VLOG(1) << "Setting descriptors.";
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
100
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
101 102 103 104 105 106 107 108 109
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
110
    // Note: PERSISTENT not implemented for inference
Q
Qiao Longfei 已提交
111
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
K
Kexin Zhao 已提交
112
        bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
113 114 115 116 117 118 119 120 121 122 123 124

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());
K
update  
Kexin Zhao 已提交
125 126 127 128
    mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
Q
Qiao Longfei 已提交
129

Q
QI JUN 已提交
130
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
K
update  
Kexin Zhao 已提交
131 132 133 134
    math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
        functor;
    functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
    functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));
Q
Qiao Longfei 已提交
135

Q
QI JUN 已提交
136
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    // Now, depending on whether we are running test or not, we have two paths.
    if (is_test) {
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
155 156 157 158
          bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
159 160 161 162 163 164 165 166 167 168
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
      double this_factor = 1. - momentum;

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
          handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
          data_desc_, x->template data<T>(), data_desc_,
          y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
K
update  
Kexin Zhao 已提交
169 170 171
          scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(), this_factor,
          mean_out->template mutable_data<BatchNormParamType<T>>(
K
Kexin Zhao 已提交
172
              ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
173 174 175
          variance_out->template mutable_data<BatchNormParamType<T>>(
              ctx.GetPlace()),
          epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
K
Kexin Zhao 已提交
176
                       ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
177
          saved_variance->template mutable_data<BatchNormParamType<T>>(
K
Kexin Zhao 已提交
178
              ctx.GetPlace())));
Q
Qiao Longfei 已提交
179 180 181 182 183 184 185 186 187 188
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

template <typename T>
Q
QI JUN 已提交
189
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
190 191 192 193
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
194
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
195
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
196 197 198
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
199 200 201 202 203 204
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

205 206
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
207
    int N, C, H, W, D;
Q
QI JUN 已提交
208
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#if CUDNN_VERSION_MIN(7, 0, 0)
    mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
    mode_ = CUDNN_BATCHNORM_SPATIAL;
#endif

Z
zchen0211 已提交
233 234
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
235
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
236 237 238 239 240 241
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
        bn_param_desc_, data_desc_, mode_));

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    d_scale->mutable_data<T>(ctx.GetPlace());
    d_bias->mutable_data<T>(ctx.GetPlace());

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const void *saved_mean_data = saved_mean->template data<T>();
    const void *saved_var_data = saved_var->template data<T>();

Q
QI JUN 已提交
262
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
263
    CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
Q
QI JUN 已提交
264 265 266 267
        dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
        CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
        data_desc_, d_y->template data<T>(), data_desc_,
Q
Qiao Longfei 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
        scale->template data<T>(),
        d_scale->template mutable_data<T>(ctx.GetPlace()),
        d_bias->template mutable_data<T>(ctx.GetPlace()), epsilon,
        saved_mean_data, saved_var_data));

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
285
namespace plat = paddle::platform;
Q
QI JUN 已提交
286
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
287 288
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
289
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
290
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>);