jit_kernel_blas.cc 14.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
36
namespace jit = platform::jit;
T
tensor-tang 已提交
37

T
tensor-tang 已提交
38 39 40 41
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
42
  }
T
tensor-tang 已提交
43
}
T
tensor-tang 已提交
44

T
tensor-tang 已提交
45 46 47 48 49 50 51
template <typename T>
void VAddRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

T
tensor-tang 已提交
52 53 54 55 56 57 58 59
template <typename T>
void VAddReluRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
    z[i] = z[i] > 0 ? z[i] : 0;
  }
}

T
tensor-tang 已提交
60 61 62 63 64 65 66
template <typename T>
void VScalRefer(const T* a, const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = a[0] * x[i];
  }
}

T
tensor-tang 已提交
67 68 69 70 71 72 73 74
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
T
tensor-tang 已提交
75

T
tensor-tang 已提交
76 77 78 79
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92

template <typename T>
void VAddMKL(const T* x, const T* y, T* z, int n);

template <>
void VAddMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsAdd(n, x, y, z);
}

template <>
void VAddMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdAdd(n, x, y, z);
}
T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

template <typename T>
void VScalMKL(const T* a, const T* x, T* y, int n);

template <>
void VScalMKL<float>(const float* a, const float* x, float* y, int n) {
  if (x == y) {
    platform::dynload::cblas_sscal(n, *a, y, 1);
  } else {
    VScalRefer<float>(a, x, y, n);
  }
}

template <>
void VScalMKL<double>(const double* a, const double* x, double* y, int n) {
  if (x == y) {
    platform::dynload::cblas_dscal(n, *a, y, 1);
  } else {
    VScalRefer<double>(a, x, y, n);
  }
}

T
tensor-tang 已提交
115 116
#endif

T
tensor-tang 已提交
117 118 119 120 121 122 123
#define DECLARE_STATIC_FUNC                                 \
  static inline std::string name(int d) {                   \
    PADDLE_THROW("DType should be either float or double"); \
  }                                                         \
  static inline bool useJIT(int d) { return false; }        \
  static inline bool useMKL(int d) { return false; }

124
/* VMUL JitKernel */
T
tensor-tang 已提交
125 126 127
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
128
  DECLARE_STATIC_FUNC;
T
tensor-tang 已提交
129
  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
130
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
131
    if (useJIT(d)) {
T
tensor-tang 已提交
132 133
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
134
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 0, false,
T
tensor-tang 已提交
135
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
136 137 138 139
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
140
#endif
T
tensor-tang 已提交
141 142 143 144 145
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
146
#endif
T
tensor-tang 已提交
147 148 149
    this->Compute = VMulRefer<T>;
  }

T
tensor-tang 已提交
150 151
#ifdef PADDLE_WITH_XBYAK

T
tensor-tang 已提交
152
 private:
T
tensor-tang 已提交
153
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
154
#endif
T
tensor-tang 已提交
155 156
};

T
tensor-tang 已提交
157
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
158 159
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
160
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
161
}
T
tensor-tang 已提交
162
#endif
T
tensor-tang 已提交
163

T
tensor-tang 已提交
164
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
165 166 167 168 169 170 171 172 173
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
174
#endif
T
tensor-tang 已提交
175

T
tensor-tang 已提交
176 177
/* VAdd JitKernel */
template <typename T>
T
tensor-tang 已提交
178 179
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
180 181
  DECLARE_STATIC_FUNC;
  explicit VAddKernelImpl(int d) : VAddKernel<T>() {
T
tensor-tang 已提交
182
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
183 184
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
185
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, false,
T
tensor-tang 已提交
186
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
187 188 189
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
190
    }
T
tensor-tang 已提交
191
#endif
T
tensor-tang 已提交
192 193 194 195 196 197 198
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VAddMKL<T>;
      return;
    }
#endif
    this->Compute = VAddRefer<T>;
T
tensor-tang 已提交
199
  }
T
fix mac  
tensor-tang 已提交
200
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
201 202

 private:
T
tensor-tang 已提交
203
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
204
#endif
T
tensor-tang 已提交
205
};
T
tensor-tang 已提交
206

T
tensor-tang 已提交
207
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
208 209
template <>
bool VAddKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
210
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
211
}
T
tensor-tang 已提交
212
#endif
T
tensor-tang 已提交
213

T
tensor-tang 已提交
214
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
215 216 217 218
template <>
bool VAddKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
219

T
tensor-tang 已提交
220 221 222 223
template <>
bool VAddKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
224
#endif
T
tensor-tang 已提交
225

T
tensor-tang 已提交
226 227 228 229 230 231
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  DECLARE_STATIC_FUNC;
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() {
T
tensor-tang 已提交
232
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
233 234
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
235
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::add, 0, true,
T
tensor-tang 已提交
236
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
237 238 239 240
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
241
#endif
T
tensor-tang 已提交
242 243
    this->Compute = VAddReluRefer<T>;
  }
T
fix mac  
tensor-tang 已提交
244
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
245 246

 private:
T
tensor-tang 已提交
247
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
fix mac  
tensor-tang 已提交
248
#endif
T
tensor-tang 已提交
249 250
};

T
tensor-tang 已提交
251
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
252 253
template <>
bool VAddReluKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
254
  return gen::VXXJitCode::init(d);
T
tensor-tang 已提交
255
}
T
tensor-tang 已提交
256
#endif
T
tensor-tang 已提交
257

T
tensor-tang 已提交
258 259
/* VScal JitKernel */
template <typename T>
T
tensor-tang 已提交
260 261
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
262 263 264 265 266
  DECLARE_STATIC_FUNC;
  explicit VScalKernelImpl(int d) : VScalKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
T
tensor-tang 已提交
267 268
      jitcode_.reset(new gen::VXXJitCode(d, gen::operand_type::mul, 1, false,
                                         sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
269 270 271
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
T
tensor-tang 已提交
272
    }
T
tensor-tang 已提交
273
#endif
T
tensor-tang 已提交
274
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
275 276 277 278
    if (useMKL(d)) {
      this->Compute = VScalMKL<T>;
      return;
    }
T
tensor-tang 已提交
279
#endif
T
tensor-tang 已提交
280
    this->Compute = VScalRefer<T>;
T
tensor-tang 已提交
281
  }
T
tensor-tang 已提交
282
#ifdef PADDLE_WITH_XBYAK
T
tensor-tang 已提交
283

T
tensor-tang 已提交
284
 private:
T
tensor-tang 已提交
285
  std::unique_ptr<gen::VXXJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
286
#endif
T
tensor-tang 已提交
287 288 289 290 291
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VScalKernelImpl<float>::useJIT(int d) {
T
tensor-tang 已提交
292
  return gen::VXXJitCode::init(d, 1);
T
tensor-tang 已提交
293
}
T
tensor-tang 已提交
294
#endif
T
tensor-tang 已提交
295 296 297 298 299 300 301 302 303 304

#ifdef PADDLE_WITH_MKLML
template <>
bool VScalKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
template <>
bool VScalKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
305 306
#endif

T
tensor-tang 已提交
307 308 309 310 311 312
#undef DECLARE_STATIC_FUNC

REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddrelu, VAddReluKernel);
T
tensor-tang 已提交
313

T
tensor-tang 已提交
314 315 316 317
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
318 319 320
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
321 322 323 324 325
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
326 327 328 329 330 331 332
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
333 334
  }

T
tensor-tang 已提交
335 336 337 338 339 340 341 342 343 344
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
460 461 462 463 464
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
465 466 467 468 469 470 471 472
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
473 474 475
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
476 477 478 479 480

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle