detr_transformer.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
17 18 19 20 21 22 23 24 25 26

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ppdet.core.workspace import register
27
from ..layers import MultiHeadAttention, _convert_attention_mask
28
from .position_encoding import PositionEmbedding
S
shangliang Xu 已提交
29 30
from .utils import _get_clones
from ..initializer import linear_init_, conv_init_, xavier_uniform_, normal_
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

__all__ = ['DETRTransformer']


class TransformerEncoderLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(TransformerEncoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        self.self_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)

    @staticmethod
    def with_pos_embed(tensor, pos_embed):
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(self, src, src_mask=None, pos_embed=None):
        residual = src
        if self.normalize_before:
            src = self.norm1(src)
        q = k = self.with_pos_embed(src, pos_embed)
        src = self.self_attn(q, k, value=src, attn_mask=src_mask)

        src = residual + self.dropout1(src)
        if not self.normalize_before:
            src = self.norm1(src)

        residual = src
        if self.normalize_before:
            src = self.norm2(src)
        src = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = residual + self.dropout2(src)
        if not self.normalize_before:
            src = self.norm2(src)
        return src


class TransformerEncoder(nn.Layer):
    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, src_mask=None, pos_embed=None):
        output = src
        for layer in self.layers:
            output = layer(output, src_mask=src_mask, pos_embed=pos_embed)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerDecoderLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        self.self_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        self.cross_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)

    @staticmethod
    def with_pos_embed(tensor, pos_embed):
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                pos_embed=None,
                query_pos_embed=None):
        tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt, query_pos_embed)
        tgt = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask)
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        q = self.with_pos_embed(tgt, query_pos_embed)
        k = self.with_pos_embed(memory, pos_embed)
        tgt = self.cross_attn(q, k, value=memory, attn_mask=memory_mask)
        tgt = residual + self.dropout2(tgt)
        if not self.normalize_before:
            tgt = self.norm2(tgt)

        residual = tgt
        if self.normalize_before:
            tgt = self.norm3(tgt)
        tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = residual + self.dropout3(tgt)
        if not self.normalize_before:
            tgt = self.norm3(tgt)
        return tgt


class TransformerDecoder(nn.Layer):
    def __init__(self,
                 decoder_layer,
                 num_layers,
                 norm=None,
                 return_intermediate=False):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                pos_embed=None,
                query_pos_embed=None):
        tgt_mask = _convert_attention_mask(tgt_mask, tgt.dtype)

        output = tgt
        intermediate = []
        for layer in self.layers:
            output = layer(
                output,
                memory,
                tgt_mask=tgt_mask,
                memory_mask=memory_mask,
                pos_embed=pos_embed,
                query_pos_embed=query_pos_embed)
            if self.return_intermediate:
                intermediate.append(self.norm(output))

        if self.norm is not None:
            output = self.norm(output)

        if self.return_intermediate:
            return paddle.stack(intermediate)

        return output.unsqueeze(0)


@register
class DETRTransformer(nn.Layer):
    __shared__ = ['hidden_dim']

    def __init__(self,
                 num_queries=100,
                 position_embed_type='sine',
                 return_intermediate_dec=True,
                 backbone_num_channels=2048,
                 hidden_dim=256,
                 nhead=8,
                 num_encoder_layers=6,
                 num_decoder_layers=6,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(DETRTransformer, self).__init__()
        assert position_embed_type in ['sine', 'learned'],\
            f'ValueError: position_embed_type not supported {position_embed_type}!'
        self.hidden_dim = hidden_dim
        self.nhead = nhead

        encoder_layer = TransformerEncoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation,
            attn_dropout, act_dropout, normalize_before)
        encoder_norm = nn.LayerNorm(hidden_dim) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers,
                                          encoder_norm)

        decoder_layer = TransformerDecoderLayer(
            hidden_dim, nhead, dim_feedforward, dropout, activation,
            attn_dropout, act_dropout, normalize_before)
        decoder_norm = nn.LayerNorm(hidden_dim)
        self.decoder = TransformerDecoder(
            decoder_layer,
            num_decoder_layers,
            decoder_norm,
            return_intermediate=return_intermediate_dec)

        self.input_proj = nn.Conv2D(
            backbone_num_channels, hidden_dim, kernel_size=1)
        self.query_pos_embed = nn.Embedding(num_queries, hidden_dim)
        self.position_embedding = PositionEmbedding(
            hidden_dim // 2,
            normalize=True if position_embed_type == 'sine' else False,
            embed_type=position_embed_type)

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)
        conv_init_(self.input_proj)
        normal_(self.query_pos_embed.weight)

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            'backbone_num_channels': [i.channels for i in input_shape][-1],
        }

295 296 297
    def _convert_attention_mask(self, mask):
        return (mask - 1.0) * 1e9

298
    def forward(self, src, src_mask=None, *args, **kwargs):
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        r"""
        Applies a Transformer model on the inputs.

        Parameters:
            src (List(Tensor)): Backbone feature maps with shape [[bs, c, h, w]].
            src_mask (Tensor, optional): A tensor used in multi-head attention
                to prevents attention to some unwanted positions, usually the
                paddings or the subsequent positions. It is a tensor with shape
                [bs, H, W]`. When the data type is bool, the unwanted positions
                have `False` values and the others have `True` values. When the
                data type is int, the unwanted positions have 0 values and the
                others have 1 values. When the data type is float, the unwanted
                positions have `-INF` values and the others have 0 values. It
                can be None when nothing wanted or needed to be prevented
                attention to. Default None.

        Returns:
            output (Tensor): [num_levels, batch_size, num_queries, hidden_dim]
            memory (Tensor): [batch_size, hidden_dim, h, w]
        """
        # use last level feature map
        src_proj = self.input_proj(src[-1])
321
        bs, c, h, w = paddle.shape(src_proj)
322 323 324
        # flatten [B, C, H, W] to [B, HxW, C]
        src_flatten = src_proj.flatten(2).transpose([0, 2, 1])
        if src_mask is not None:
325
            src_mask = F.interpolate(src_mask.unsqueeze(0), size=(h, w))[0]
326
        else:
327
            src_mask = paddle.ones([bs, h, w])
328
        pos_embed = self.position_embedding(src_mask).flatten(1, 2)
329

330 331 332 333 334
        if self.training:
            src_mask = self._convert_attention_mask(src_mask)
            src_mask = src_mask.reshape([bs, 1, 1, h * w])
        else:
            src_mask = None
335 336 337 338 339 340 341 342 343 344 345 346 347 348

        memory = self.encoder(
            src_flatten, src_mask=src_mask, pos_embed=pos_embed)

        query_pos_embed = self.query_pos_embed.weight.unsqueeze(0).tile(
            [bs, 1, 1])
        tgt = paddle.zeros_like(query_pos_embed)
        output = self.decoder(
            tgt,
            memory,
            memory_mask=src_mask,
            pos_embed=pos_embed,
            query_pos_embed=query_pos_embed)

349 350 351 352 353
        if self.training:
            src_mask = src_mask.reshape([bs, 1, 1, h, w])
        else:
            src_mask = None

354
        return (output, memory.transpose([0, 2, 1]).reshape([bs, c, h, w]),
355
                src_proj, src_mask)