test_GradientMachine.cpp 4.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include <gtest/gtest.h>
Y
Yu Yang 已提交
16
#include <paddle/gserver/gradientmachines/GradientMachine.h>
Y
Stash  
Yu Yang 已提交
17
#include <paddle/trainer/TrainerConfigHelper.h>
Y
Yu Yang 已提交
18 19
#include <stdlib.h>
#include <string.h>
Y
Yu Yang 已提交
20
#include <type_traits>
Y
Yu Yang 已提交
21
#include "PaddleCAPI.h"
Y
Yu Yang 已提交
22
#include "paddle/utils/ThreadLocal.h"
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36
static std::vector<pd_real> randomBuffer(size_t bufSize) {
  auto& eng = paddle::ThreadLocalRandomEngine::get();
  std::uniform_real_distribution<pd_real> dist(-1.0, 1.0);
  std::vector<pd_real> retv;
  retv.reserve(bufSize);
  for (size_t i = 0; i < bufSize; ++i) {
    retv.push_back(dist(eng));
  }
  return retv;
}

TEST(GradientMachine, testPredict) {
  paddle::TrainerConfigHelper config("./test_predict_network.py");
Y
Stash  
Yu Yang 已提交
37 38 39 40
  std::string buffer;
  ASSERT_TRUE(config.getModelConfig().SerializeToString(&buffer));
  PD_GradiemtMachine machine;

Y
Yu Yang 已提交
41
  ASSERT_EQ(kPD_NO_ERROR,
Y
Stash  
Yu Yang 已提交
42 43
            PDGradientMachineCreateForPredict(
                &machine, &buffer[0], (int)buffer.size()));
Y
Yu Yang 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  std::unique_ptr<paddle::GradientMachine> gm(
      paddle::GradientMachine::create(config.getModelConfig()));
  ASSERT_NE(nullptr, gm);
  gm->randParameters();
  gm->saveParameters("./");

  ASSERT_EQ(kPD_NO_ERROR,
            PDGradientMachineLoadParameterFromDisk(machine, "./"));

  PD_GradiemtMachine machineSlave;
  ASSERT_EQ(kPD_NO_ERROR,
            PDGradientMachineCreateSharedParam(
                machine, &buffer[0], (int)buffer.size(), &machineSlave));
  std::swap(machineSlave, machine);
  PD_Arguments outArgs;
  ASSERT_EQ(kPD_NO_ERROR, PDArgsCreateNone(&outArgs));

  PD_Arguments inArgs;
  ASSERT_EQ(kPD_NO_ERROR, PDArgsCreateNone(&inArgs));
  ASSERT_EQ(kPD_NO_ERROR, PDArgsResize(inArgs, 1));
  PD_Matrix mat;
  ASSERT_EQ(kPD_NO_ERROR, PDMatCreate(&mat, 1, 100, false));
  static_assert(std::is_same<pd_real, paddle::real>::value, "");

  auto data = randomBuffer(100);
  pd_real* rowPtr;
  ASSERT_EQ(kPD_NO_ERROR, PDMatGetRow(mat, 0, &rowPtr));
  memcpy(rowPtr, data.data(), data.size() * sizeof(pd_real));

  ASSERT_EQ(kPD_NO_ERROR, PDArgsSetValue(inArgs, 0, mat));
  ASSERT_EQ(kPD_NO_ERROR,
            PDGradientMachineForward(machine, inArgs, outArgs, false));

  uint64_t sz;
  ASSERT_EQ(kPD_NO_ERROR, PDArgsGetSize(outArgs, &sz));
  ASSERT_EQ(1UL, sz);

  ASSERT_EQ(kPD_NO_ERROR, PDArgsGetValue(outArgs, 0, mat));
  std::vector<paddle::Argument> paddleInArgs;
  std::vector<paddle::Argument> paddleOutArgs;
  paddleInArgs.resize(1);
  paddleInArgs[0].value =
      paddle::Matrix::create(data.data(), 1, 100, false, false);

  gm->forward(paddleInArgs, &paddleOutArgs, paddle::PASS_TEST);

  auto matPaddle = paddleOutArgs[0].value;

  uint64_t height, width;
  ASSERT_EQ(kPD_NO_ERROR, PDMatGetShape(mat, &height, &width));
  ASSERT_EQ(matPaddle->getHeight(), height);
  ASSERT_EQ(matPaddle->getWidth(), width);

  ASSERT_EQ(kPD_NO_ERROR, PDMatGetRow(mat, 0, &rowPtr));
  for (size_t i = 0; i < width; ++i) {
    ASSERT_NEAR(matPaddle->getData()[i], rowPtr[i], 1e-5);
  }

  ASSERT_EQ(kPD_NO_ERROR, PDMatDestroy(mat));
  ASSERT_EQ(kPD_NO_ERROR, PDArgsDestroy(inArgs));
  ASSERT_EQ(kPD_NO_ERROR, PDArgsDestroy(outArgs));
  std::swap(machineSlave, machine);
  ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineDestroy(machineSlave));
  ASSERT_EQ(kPD_NO_ERROR, PDGradientMachineDestroy(machine));
Y
Yu Yang 已提交
108 109 110 111 112 113 114 115 116 117 118 119
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  std::vector<char*> argvs;
  argvs.push_back(strdup("--use_gpu=false"));
  PDInit((int)argvs.size(), argvs.data());
  for (auto each : argvs) {
    free(each);
  }
  return RUN_ALL_TESTS();
}